

使用说明书

OPERATION MANUAL

TH283X 系列 精密 LCR 数字电桥

TH283X Series of LCR Meter

V2.4@202506

目 录

第~	章	概述	1
	1.1	简介	1
	1.2	电源连接	1
	1.3	保险丝	1
	1.4	环境	1
	1.5	测试夹具	2
	1.6	预热	2
	1.7	安全要求	2
	1.8	电磁兼容性	3
	1.9	仪器的其它特性	3
第 2	2章	面板说明	4
	2.1	前面板	4
	2.2	后面板	6
	2.3	显示区域定义	7
		主菜单按键和相应显示页面	
		2.4.1 显示主菜单按键[DISP]	7
		2.4.2 参数设置主菜单按键[SETUP]	
		2.4.3 系统设置主菜单按键[SETUP]	
	2.5	基本操作	
		开机	
第3		<元件测量显示>页面	
715		测试功能	
		测试量程	
		测试频率	
		测试电平	
		直流偏置	
		测试速度	
		其它工具	
		<档号显示>页面	
	0.0	3.8.1 比较器功能	
	3 0	<档计数显示>页面	
	0.0	3.9.1 参数	
		3.9.2 标称	
		3.9.3 档	
		3.9.4 上下限	
		3.9.5 计数	
		3.9.6 附属(AUX)	
		3.9.7 超差 (OUT)	
	2 1	3.5.7 起左 (OO1) 3 <列表扫描>页面	
	J. 11	3.10.1 扫描方式	
		3.10.1 扫抽刀式	
		3.10.3 R[:]X[:]	
	2 4	3.10.4 CMP(比较)	
	3.T	1 <测量设置>页面	۷3

3.11.1 触发方式	24
3.11.2 自动电平控制功能	25
3.11.3 平均次数	26
3.11.4 电平电流监视功能	26
3.11.5 触发延时	26
3.11.6 步进延时	27
3.11.7 输出电阻	27
3.11.8 直流电阻极性	28
3.11.9 直流电阻量程	28
3.11.10 直流电平	28
3.11.11 偏差测试功能	28
3.12 <用户校正>页面	30
3.12.1 开路校正	31
3.12.2 短路校正	32
3.12.3 负载校正	34
3.12.4 负载校正测试功能	35
3.12.5 点频校正	35
3.12.6 电缆长度选择	35
3.13 <极限列表设置>页面	36
3.13.1 对调参数	36
3.13.2 比较功能极限模式	37
3.13.3 容差方式标称值设置	
3.13.4 比较器功能 ON/OFF	
3.13.5 附属档 ON/OFF	
3.13.6 上下极限	39
3.13.7 上下极限设置操作步骤	39
3.14 <列表扫描设置>页面	40
3.14.1 方式	41
3.14.2 测试参数可选项	41
3.14.3 扫描参数设置	41
3.15 <工具>页面	41
3.15.1 校正数据	
3.15.2 空夹具判别	42
3.15.3 锁定标称量程	42
3.15.4 自动返回数据	
3.15.5 HDL 有效时间	43
第 4 章 [SYSTEM]菜单键说明和文件管理	44
4.1 <系统设置>页面	44
4.1.1 仪器功能	44
4.1.2 合格讯响	44
4.1.3 不良讯响	45
4.1.4 显示语言	
4.1.5 口令	45
4.1.6 总线方式	46
4.1.7 GPIB 地址(预留功能)	46
4.1.8 只讲(Talk Only)	47

4.1.10 波特率	. 48 . 48 . 48 . 50 . 50 . 53 . 53
4.1.12 时间	. 48 . 48 . 50 . 50 . 53 . 53
4.2 <文件管理>页面	. 48 . 48 . 50 . 50 . 53 . 53
4.2.1 单组元件设定文件(*.STA) 4.2.2 优盘管理性能	. 48 . 50 . 50 . 53 . 53
4.2.2 优盘管理性能	. 50 . 50 . 53 . 53
4.2.3 文件管理操作步骤:	. 50 . 53 . 53 . 53
	. 53 . 53 . 53
第5章 执行 LCR 测量操作及一些示例	. 53 . 53
	. 53
5.1 "清零"校正操作	
5.1.1 全频清零	
5.1.2 点频清零	. 53
5.2 被测元件的正确连接	. 54
5.3 消除杂散阻抗的影响	. 55
5.4 测试电感快速操作实例	. 55
5.5 多频列表扫描测试电容快速操作实例	. 56
5.6 比较器设置实例	. 58
5.6.1 电容器分选	. 58
5.6.2 负载校准操作实例	. 59
第6章 性能与测试	. 61
6.1 测量功能	. 61
6.1.1 测量参数及符号	. 61
6.1.2 等效方式	. 61
6.1.3 量程	. 61
6.1.4 触发	. 61
6.1.5 触发延时	. 61
6.1.6 测试端连接方式	. 61
6.1.7 测量速度	. 62
6.1.8 平均	. 62
6.1.9 显示位数	. 62
6.2 测试信号	. 62
6.2.1 测试信号频率	. 62
6.2.2 信号模式	. 62
6.2.3 测试信号电平	. 62
6.2.4 输出阻抗	. 63
6.2.5 测试信号电平监视器	. 63
6.2.6 测量显示最大范围	. 63
6.2.7 直流偏置电压源	. 63
6.3 测量准确度	. 63
6.3.1 Z 、 Y 、L、C、R、X、G、B 的准确度	. 64
6.3.2 D 准确度	. 64
6.3.3 Q 准确度	. 64
6.3.4 θ 准确度	. 65
6.3.5 G 准确度	. 65
6.3.6 Rp 准确度	. 65
6.3.7 Rs 准确度	. 65

	6.3.8 准确度因子	67
	6.3.9 直流电阻 DCR 准确度	69
6.4	性能测试	69
	6.4.1 工作条件	69
	6.4.2 试验仪器和设备见	69
	6.4.3 功能检查	70
	6.4.4 测试信号电平	70
	6.4.5 频率	70
	6.4.6 测量准确度	70
	6.4.7 电容量 C、损耗 D 准确度	71
	6.4.8 电感量 L 准确度	71
	6.4.9 阻抗 Z 准确度	71
	6.4.10 直流电阻 DCR 准确度	72
第7章	命令参考	73
7.1	仪器子系统命令:	73
	7.1.1 DISPlay 子系统命令集	74
	7.1.2 FREQuency 子系统命令集	76
	7.1.3 VOLTage 子系统命令集	77
	7.1.4 CURRent 子系统命令集	
	7.1.5 AMPLitude 子系统命令集	78
	7.1.6 Output RESister 子系统命令集	78
	7.1.7 BIAS 子系统命令集	78
	7.1.8 FUNCtion 子系统命令集	81
	7.1.9 LIST 子系统命令集	87
	7.1.10 APERture 子系统命令集	93
	7.1.11 TRIGger 子系统命令集	94
	7.1.12 :FETCH?子系统命令集	95
	7.1.13 RS232 自动返回	97
	7.1.14 CORRection 子系统命令集	
	7.1.15 COMParator 子系统命令集	
	7.1.16 DCR 子系统命令集	
	7.1.17 Mass MEMory 子系统命令集	
7.2	GPIB 公用命令	
	Handler 接口使用说明	
	技术说明	
	操作说明	
	8.2.1 信号线定义	
	8.2.2 电气特征	
	8.2.3 HANDLER 接口板电路	
8.3	使用操作	
	附录	
	成套	
	保修	
	手册更改记录	

第1章 概述

本章讲述当您收到仪器后必须进行的一些检查,并且在安装使用仪器之前必须了解和具备的条件。

感谢您购买和使用我公司产品,在开箱后您应先检查仪器是否因为运输出现外表破损,我们不推荐您在外表破损的情况下给仪器上电。然后根据最后一章附录的装箱单进行确认,若有不符可尽快与我公司或经销商联系,以维护您的权益。

1.1 简介

TH283X 系列是新一代低预算成本,高性能紧凑型 LCR 数字电桥,采用最新工艺和高密度电路设计,浓缩大型 LCR 测试仪的精华、紧凑、小巧。取消传统机械电源开关,采用软件控制电源开关。0.05%的基本精度和良好的测试稳定性可与高端机型媲美。配备 4.3 寸 LCD 显示屏和全新升级的界面系统,美观大方,操作简便。仪器提供丰富的接口,兼容标准 SCPI 指令,可方便地组成各种测试系统,满足检验、生产、科研的各种需求。

1.2 电源连接

- 供电电压范围: 198~242 Vac。(TH2832D: 24V+10%)
- 供电频率范围: 47~63 Hz。(TH2832D 为 DC 供电)
- 供电功率范围: 不小于 80 VA。(TH2832D 不小于 24VA)
- 电源输入相线 L、零线 N、地线 E 与本仪器电源插头相同。
- 本仪器已经经过仔细设计以减少因 AC 电源端输入带来的杂波干扰,然而仍应尽量使其在低噪声的环境下使用,如果无法避免,请安装电源滤波器。

警告: 为了防止漏电对仪器或人造成伤害,用户必须保证供电电源的地线可靠接到大地。

1.3 保险丝

仪器出厂已配备了保险丝,用户应使用本公司配备的保险丝。

警告:上电前应注意你的保险丝位置是否与供电电压范围符合。

1.4 环境

- 请不要在多尘、多震动、日光直射、有腐蚀气体下使用。
- 仪器正常工作时应在温度为 0°C~40°C,相对湿度≤75%环境下,因此请尽量在此条件下使用仪器,以保证测量的准确度。

- 本测试仪器后面板装有散热装置以避免内部温度上升,为了确保通风良好,切勿阻塞左右通风孔,以使本仪器维持准确度。
- 本仪器已经经过仔细设计以减少因 AC 电源端输入带来的杂波干扰,然而仍应尽量使其在低噪声的环境下使用,如果无法避免,请安装电源滤波器。
- 仪器长期不使用,请将其放在原始包装箱或相似箱子中储存在温度为 5°C~40°C,相对湿度不大于 85%RH 的通风室内,空气中不应含有腐蚀测量仪的 有害杂质,且应避免日光直射。
- 仪器特别是连接被测件的测试导线应远离强电磁场,以免对测量产生干扰。

1.5 测试夹具

请使用本公司配备的测试夹具或测试电缆,用户自制或其他公司的测试夹具 或测试电缆可能会导致不正确的测量结果。仪器测试夹具或测试电缆应保持清洁, 被测试器件引脚保持清洁,以保证被测器件与夹具接触良好。

将测试夹具或测试电缆连接于本仪器前面板的 Hcur、Hpot、Lcur、Lpot 四个测试端上。对具有屏蔽外壳的被测件,可以把屏蔽层与仪器地"┸"相连。

注:没有安装测试夹具或测试电缆时,仪器将显示一个不稳定的测量结果。

1.6 预热

- 为保证仪器精确测量,开机预热时间应不少于 15 分钟
- 请勿频繁开关仪器,以免引起内部数据混乱。

1.7 安全要求

测量仪为I类安全仪器。

符合 Directive 2006/95/EC 有关安全的要求

EN 61010-1:2010+A1:2019 测量、控制和实验室用电气设备的安全要求

绝缘电阻:

在参比工作条件下,电源端子与外壳之间的绝缘电阻应不小于 50MΩ。 在运输湿热条件下,电压端子与外壳之间的绝缘电阻应不小于 2MΩ。

绝缘强度:

在参比工作条件下,电源端子与外壳之间应能承受频率为 50Hz, 额定电压为 1.5kV 的交流电压,定时 1 分钟。应无击穿和飞弧现象。

泄漏电流:

泄漏电流应不大于 3.5mA(交流有效值)。

1.8 电磁兼容性

电磁兼容性要求

符合 Directive 2004/108/EC 有关电磁兼容性的要求

EN 61326-1:2021 测量、控制和实验室用电气设备电磁兼容性要求

- CISPR 11:2015+A1:2016+A2:2019 放射和传导辐射量,组 1,A类
- EN 61000-4-2:2009 静电放电抗扰度
- EN 61000-4-3:2020 射频电磁场辐射抗扰度
- EN 61000-4-4:2012 电快速瞬变脉冲群抗扰度
- EN 61000-4-5:2014+A1:2017 电源线路浪涌冲击抗扰度
- EN 61000-4-6:2014 传导射频抗扰度
- EN 61000-4-11:2020 电压暂降和中断抗扰度

EN 61000-3-2:2019+A1:2021 交流电源线谐波辐射

EN 61000-3-3:2013+A1:2019+A2:2021 电压变化、波动和闪变

1.9 仪器的其它特性

- 功耗:消耗功率≤80VA。(TH2832D消耗功率≤24VA)
- 外形尺寸(W*H*D): 235mm*105mm*360mm;
- 上架尺寸(W*H*D): 215mm*88mm*335mm;
- 重量:约 3.6kg; (TH2832D 约 2kg)

第2章 面板说明

本章讲述了 TH2830 系列仪器的基本操作特征。在使用 TH2830 系列仪器之前,请详细阅读本章内容,以便你可以很快学会 TH2830 的操作。

2.1 前面板

图 2-1 对 TH2830 前面板进行了简要说明。

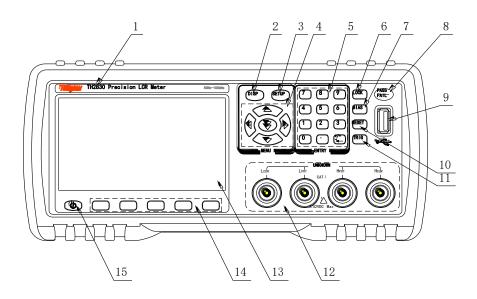


图 2-1. 前面板说明

- 1. 商标及型号: 仪器商标及型号
- 2. [DISP]菜单键:按[DISP]键,进入仪表功能(电桥)相应的测试显示页面。
- 3. **[SETUP]菜单键:** 按[SETUP]键,交替进入仪表功能(电桥、变压器测量、变压器扫描)相应的测试设置页面和系统设置界面。
- 4. **方向键(CURSOR):** 方向键用于在 LCD 显示页面的域和域之间移动光标。当光标移动到某一域,该域在液晶显示屏上以加亮显示。快速下方向键可跳跃的移动到某一区域。
- 5. **数值键:** 数值键用于向仪器输入数据。数值键由数字键[0]至[9],小数点 [.]和[+/-]键组成。按[+/-]键,如果是在输入数据的第一位就是符号选择,否则就相 当于 BACKSPACE,删除最后一个数字的功能。

(注意:长按小数点[.]键,相当于拷屏功能。)

6. **[KEYLOCK]键:** 按[KEYLOCK]键, [KEYLOCK]按键会被点亮,表示当前面板按键功能被锁定,再次按[KEYLOCK]键,[KEYLOCK]按键会熄灭,表示解除键盘锁定状态。如果口令功能设置为"ON",解除键盘锁定时需输入正确的口令,否则无法解除键盘锁定。

当仪器受到 RS232 控制时[KEYLOCK]按键会被点亮。再次按[KEYLOCK] 键,[KEYLOCK]按键会熄灭,表示回到本地解除键盘锁定状态。

7. **[BIAS]键:** [BIAS]键用于允许或禁止 0-50mA/5V 直流偏置电源输出。按 [BIAS]键, [BIAS]按键会被点亮,表示允许直流偏置输出,再次按[BIAS]键, [BIAS]

按键会熄灭,表示禁止直流偏置输出。在有些无法加 DC BIAS 的非测试画面,按此键将无反应。(TH2830/TH2830I 无此功能)。当测量功能为 DCR、Lp-Rd、Ls-Rd 是该功能无效。

- 8. **PASS 指示灯,FAIL 指示灯:** 测试判断合格 PASS LED 指示,测试判断不良 FAIL LED 指示。
- 9. **USB HOST 接口:** 用于连接 U 盘存储器,进行文件的保存与调用, 拷屏及保存测量数据等。
- 10. **[RESET]键:** 按**[RESET]**键,仅在变压器自动扫描时终止扫描,其他页面 仪器不执行任何操作。
- 11. **[TRIGGER]键:** 当仪器触发方式设定为 MAN(手动)模式时,可按该键手动触发仪器。
- 12. 测试端(UNKNOWN): 四端测试端,用于连接四端测试夹具或测试电缆,对被测件进行测量。
 - 电流激励高端(Hcur);
 - 电压取样高端(Hpot);
 - 电压取样低端(Lpot);
 - 电流激励低端(Lcur)。
- 13. **LCD 液晶显示屏:** 480x272 彩色 TFT LCD 显示屏,显示测量结果,测量条件等。
- **14. 软键:** 五个软键可用于选择控制和参数,每个软键的上方都有相应的功能定义。软键定义随显示页面不同而改变。
 - 15. 电源开关(POWER)

2.2 后面板

图 2-2 对 TH2830 后面板进行了简要说明。

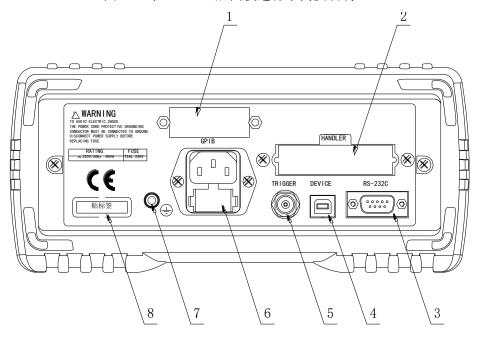


图 2-2. 后面板说明

- 1. **IEEE-488 (GPIB)接口:** 实现与电脑的联机通讯。(TH2832D 后面板 出除电源接口外,其余接口相同)
 - 2. **HANDLER 接口:** 实现测试结果的分选输出。(TH2832D 选配)
 - 3. **RS232C接口:** 串行通讯接口,实现与电脑的联机通讯。
 - 4. USB DEVICE 接口:通讯接口,实现与电脑的联机通讯。
 - 5. **TRIGGER 接口:** 可连接脚控等外部触发装置。(TH2832D 选配)
- 6. **电源插座:** 用于输入交流电源。(TH2832D 为欧式接线端子,接 DC 电源)
 - 7. 机壳接地端: 该接线端与仪器机壳相连,可以用于保护或屏蔽接地连接。
 - 8. 铭牌:指示生产日期、仪器编号、生产厂家等信息。

2.3 显示区域定义

TH2830 采用了 65k 色的 4.3 寸宽屏 TFT 显示屏,显示屏显示的内容被划分成如下的显示区域,见图 2-3。

- 1. 显示页面区域:该区域指示当前页面的名称。
- **2. 软键区域:** 该区域被用于显示软键的功能定义。软键的定义随光标所在的域的位置不同而具有不同功能的定义。
 - 3. 测量结果/条件显示区域: 该区域显示测试结果信息和当前的测试条件。

2.4 主菜单按键和相应显示页面

2.4.1 显示主菜单按键[DISP]

电桥功能时,用于进入元件测量显示页面。主要关于电容、电阻、电感、阻抗测量功能菜单的起始按键,这部分的功能页面有(使用"软键"选择下述页面功能,下同):

- <测量显示>
- <档号显示>
- <档计数显示>
- <列表扫描显示>
- 更多 ▶
- **1/2**
- <文件管理>

- <保存数据>
- 更多 ▶
- **2/2**

注意。保存数据软件在测量显示界面和列表扫描显示界面有效,插入 U 盘后 按下数据保存,状态变为 ON, 开始保存测量数据到 U 盘 CSV 目录下.CSV 格式, 当再次按下**保存数据**软件,状态变为 OFF, 数据保存结束。

此键在 DISP 界面插入 U 盘后自动记录测试数据。

2.4.2 参数设置主菜单按键[SETUP]

电桥功能时,用于进入元件测试各设置画面。这部分的功能页面有:

- <测量设置>
- <用户校正>
- <极限设置>
- <列表设置>
- 更多 ▶
- **1/2**
- <文件管理>
- <系统设置>
- <工具>
- 更多 ▶
- **2/2**

2.4.3 系统设置主菜单按键[SETUP]

用于进入系统设置主页。主要关于系统设置、文件列表功能菜单的起始按键。 这部分的功能页面有:

- <系统设置>
- <测量设置>
- <默认设置>
- <系统复位>

2.5 基本操作

TH2830 的基本操作如下所述:

- 使用菜单按键([DISP],[SETUP])和软键选择你想要显示的页面。
- 使用光标键([◀][▶][▲][▼])将光标移到你想要设置的域。当光标移到某一个域,该域将加亮显示表示。所谓域就是可以设定光标的区域。
- 当前光标所在域相应的软键功能将显示在"软键区域"中。选择并按下所需的软键、数字键、[+/- ←]用于数据输入。
- 当一个数字键按下后,软键区域将显示可以使用的单位软键。你可以按单位软键结束数据输入, [+/- ←]用于正负数据输入和删除数据。

2.6 开机

插上三线电源插头,注意:应保持供电电压、频率等条件符合上述规定。电源输入相线 L、零线 N、地线 E 应与本仪器电源插头上的相线,零线相同。

打开电源,按下前面板上左下角电源开关,仪器开启,显示开机画面。

下图显示的是 TH2832 的开机画面,还显示了公司 LOGO,仪器的型号 (TH2832),以及软件的版本号(Ver 1.0.0)。

第3章 <元件测量显示>页面

当仪器处于电桥功能时,按下[DISP]菜单键,<元件测量显示>页面将显示在 屏幕上。如图:

在该页面上,测试结果将以大字符显示。下列测量控制参数可在本页面设定。

- 测试功能(功能)
- 测试频率(频率)
- 测试电平(**电平**)
- 测试量程(量程)
- 测试速度(速度)
- 直流偏置(偏置)

本显示页面有 6 个域,他们是: <u>功能,频率,电平,量程,速度,偏置</u>。每个控制功能域在下面段落将进行详细说明。

在本显示页面的测量结果 / 条件显示区域显示了下列测试条件信息。这些条件可在**<测量设置>**页面或**<用户校正>**页面进行设置。

- 信号源电压/电流监视(Vm,lm)
- 开路,短路,负载校正 ON/OFF 设置状态(校正)

3.1 测试功能

TH2830 一个测量周期内可同时测量阻抗元件的两个参数: 1 个主参数和 1 个副参数。可测量参数如下:

主参数:

■ |Z| (阻抗的模)

- |Y| (导纳的模)
- L (电感)
- C (电容)
- R (电阻)
- G (电导)
- DCR (直流电阻)

副参数:

- D (损耗因子)
- Q (品质因数)
- Rs (等效串联电阻 ESR)
- Rp (等效并联电阻 EPR)
- Rd (直流电阻)
- X (电抗)
- B (电纳)
- (相位角)

主参数和副参数测试结果分别以两行大字符显示。主参数显示在上面一行, 副参数显示在主参数下面一行。

测量功能设置操作步骤:

- 1. 使用光标键将光标移至功能域,将显示下列软键。
 - **■** Cp-... **▶**
 - **■** Cs-... **▶**
 - **L**p-... ▶
 - **L**s-... ▶
 - 更多 ▶
- 2. 按下 Cp-...▶软键,将出现如下参数选择:
 - Cp-D
 - Cp-Q
 - Cp-G
 - Cp-Rp
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 **◆**软键,返回上一级软键菜单。

- 3. 按下 Cs-...▶软键,将出现如下参数选择:
 - Cs-D
 - Cs-Q
 - Cs-Rs
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 **◆**软键,返回上一级软键菜单。

- 4. 按下 Lp-...▶软键,将出现如下参数选择:
 - Lp-Q
 - Lp—Rp
 - Lp—Rd
 - 更多 ▶
 - 1/2
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 ◀ 软键,返回上一级软键菜单。

- 5. 按下更多 ▶ 软键,选择下一组软键:
 - Lp-D
 - Lp-G
 - 更多 ▶
 - 2/2
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 ◆软键,返回上一级软键菜单。按下更多 ▶ 软键,选择上一组软键。

- 6. 按下 Ls-...▶软键,将出现如下参数选择:
 - Ls-D
 - Ls-Q
 - Ls-Rs
 - Ls-Rd
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 ◀ 软键,返回上一级软键菜单。

- 7. 按 更多 ▶软键,选择下一组软键:
 - **■** Z-... ▶
 - **Y**-...▶
 - **■** R-... **▶**
 - G-B
 - 更多 ▶
 - 2/3
- 8. 按下 Z-...▶软键,将出现如下参数选择:
 - Z-d
 - Z-r
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 ◀ 软键,返回上一级软键菜单。

- 9. 按下 Y-...▶软键,将出现如下参数选择:
 - Y-d
 - Y-r
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下 ◀ 软键,返回上一级软键菜单。

- 10. 按下 R-...▶软键,将出现如下参数选择:
 - R-X
 - Rp-Q
 - Rs-Q
 - 返回 ◀

按下对应的软键,选择所需要的参数,按下返回 ◀ 软键,返回上一级软键菜单。

- 11. 按下更多 ▶ 软键,将出现如下参数选择:
 - DCR
 - 更多 ▶
 - 3/3

12. 按下 DCR 软键,选择所需要的参数。按下更多▶ 键,返回第一页参数界面。

3.2 测试量程

测试量程根据被测 LCR 元件的阻抗值进行选择。

TH2830 有 10 个交流测试量程: 3Ω, 10Ω, 30Ω, 100Ω, 300Ω, 1kΩ, 3kΩ, 10kΩ, 30kΩ,100kΩ。

TH2830 有 11 个 DCR 测试量程: 1Ω, 3Ω, 10Ω, 30Ω, 100Ω, 300Ω, 1kΩ, 3kΩ, 10kΩ, 30kΩ,100kΩ。

测试量程设置操作步骤:

- 1. 使用光标键将光标移至量程域。屏幕将显示如下软键。
 - 自动: 该键用于将量程设定为 AUTO(自动)模式。
- 保持:该键用于将量程从 AUTO(自动)模式切换到 HOLD(保持)模式。 当量程设置为 HOLD(保持)模式,量程将被锁定在当前测试量程。当前测试量 程将被显示在屏幕的量程域。
 - 加 + : 该键用于在量程锁定(HOLD)模式下增加量程。
 - 减 -: 该键用于在量程锁定(HOLD)模式下减小量程。
- 2. 使用软键对测试量程进行设置。

3.3 测试频率

TH2830 系列的测试频率范围从 20 Hz 至 200kHz,分辨率 0.01Hz,具体频率范围和参看下表。当测试功能设定为 DCR 时,频率域显示"----"。

TH2830, TH2832, TH2832D 对应频率分别为 50Hz~100kHz, 20Hz~200kHz, 20Hz~300kHz。显示的测试频率的最后一位代表分辨率。

频率范围和测试频率点:

频率范围 (F)	测试频率点	分辨率
20Hz <f≤99.99hz< td=""><td>20.00Hz, 20.01Hz99.99Hz</td><td>0.01Hz</td></f≤99.99hz<>	20.00Hz, 20.01Hz99.99Hz	0.01Hz
100Hz <f≤999.9hz< td=""><td>100.0Hz,100.1Hz999.9Hz</td><td>0.1Hz</td></f≤999.9hz<>	100.0Hz,100.1Hz999.9Hz	0.1Hz
1kHz <f≤9.999khz< td=""><td>1.000kHz,1.001kHz9.999kHz</td><td>1Hz</td></f≤9.999khz<>	1.000kHz,1.001kHz9.999kHz	1Hz
10kHz <f≤99.99khz< td=""><td>10.00kHz,10.01kHz99.99kHz</td><td>10Hz</td></f≤99.99khz<>	10.00kHz,10.01kHz99.99kHz	10Hz
100kHz <f≤300khz< td=""><td>100.0kHz,100.1 kHz300kHz</td><td>100Hz</td></f≤300khz<>	100.0kHz,100.1 kHz300kHz	100Hz

测试频率设置操作步骤:

TH2830 有两种测试频率设置方式。一种是使用软键,另外一种是使用数字键直接输入。

1. 使用光标键将光标移至**频率**域。屏幕软键区显示下列软键。

■ 加 ++

该软键为频率增加粗调键。每按一下该键,频率增加至 50 Hz 后下一个 10 倍频率点。用该软键可设定的频率点如下: 50 Hz, 100 Hz, 1 kHz, 10 kHz, 100 kHz 和 200 kHz,200 kHz。

■ 加 +

该软键为频率增加精调键。每按一下该键,频率增加至下一个更高的频率点。 用该软键可设定的频率点如下:

 20Hz
 25Hz
 30Hz
 40Hz
 50Hz
 60Hz

 75Hz
 100Hz
 120Hz
 150Hz
 200Hz
 250Hz

 300Hz
 400Hz
 500Hz
 600Hz
 750Hz
 1 kHz

 1.2kHz
 1.5kHz
 2kHz
 2.5kHz
 3kHz
 4kHz

 5kHz
 6kHz
 7.5kHz
 10kHz
 12kHz
 15kHz

 20kHz
 25kHz
 30kHz
 40kHz
 50kHz
 60kHz

 75kHz
 100kHz
 120kHz
 150kHz
 250kHz
 300kHz

TH2830/ TH2832/ TH2832D 三种不同型号仪器根据其频率范围来确定加 + 键的跳变范围。

■ 减 -

该软键为频率减小精调键。每按一下该键,频率减小至下一个更低的频率点。 用该软键可设定的频率点同加 + 。

■ 减 --

该软键为频率减小粗调键。每按一次该键,频率在下表中六个典型频率点中减小。用该软键可设定的频率点同加 ++。

2. 选择或设定测试频率可使用软键或数值输入键。当用数字键输入所需的频率值时,软键显示当前可用的频率单位(Hz, kHz, MHz)。你可使用这些单位软键来输入单位和数据。

3.4 测试电平

TH2830 的测试电平以测试正弦波信号的有效值进行设定。正弦波信号的频率为测试频率,由仪器内部振荡器产生。你既可以设定测试电压值,也可以设定测试电流值。TH2830 信号源输出阻抗可选择为 30 Ω 或 100 Ω 。测试电平范围 10mv – 2V,电流输入方式时候,最大电流等于最大电平除以源内阻得到。

注意: TH2830 设置的测试电流是当被测端短路时的输出电流值。设置的测

试电压是当被测端开路时的输出电压值。

TH2830 的自动电平控制功能可以实现恒定电压或电流测量。自动电平控制功能(<u>恒电平</u>域)可由<测量设置>页面设定为 ON。当自动电平控制功能开启后,当前电平值后显示一个"*"号。详细信息请参考<测量设置>页面。

测试电平设置操作步骤:

TH2830 有两种方式可以设定测试信号源电平。一种是利用软键设定,另外一种是利用数值输入键。

- 1. 使用光标键将光标移至电平域。屏幕软键区将显示下列软键。
 - 加 +: 按该软键增加信号源输出电平。
 - 减 : 按该软键减小信号源输出电平。
- 2. 选择或设定测试电平可使用软键或数值输入键。当用数字键输入所需的电平值时,软键区显示当前可用的电平单位(mV, V, μA, mA 和 A)。你可使用这些单位软键来输入单位和数据。

注意: 当你需要将测试电平在电流和电压之间切换时,必须使用数值输入键及单位软键。

3.5 直流偏置

TH2832 可提供-1.5V~+1.5V(30 Ω 内阻),-5V~+5V(100 Ω 内阻)的内置直流偏置电压。TH2830 无此功能,当测试功能选择为 DCR 时,偏置域显示为"----"。

直流偏置设置操作步骤:

TH2832 有两种方式可以设定直流偏置。一种是利用软键设定,另外一种是利用数值输入键。

- 1. 使用光标键将光标移至**偏置**域。屏幕软键区将显示下列软键。
 - 加 + : 按该软键增加直流偏置输出电平。
 - 减-:按该软键减小直流偏置输出电平。
- 2. 选择或设定直流偏置电平可使用软键或数值输入键。当用数字键输入所需的偏置电平值时,软键区显示当前可用的直流偏置单位(mV, V, μA, mA and A)。你可使用这些单位软键来输入单位和数据。当使用[ENTER]键来输入偏置值时,直流偏置值单位默认为 V 或 A。

注意: 当你需要将直流偏置电平在电流和电压之间切换时,必须使用数值输

入键及单位软键。

按前面板[BIAS]键,允许设定的直流偏置输出。当直流偏置被允许输出时, [BIAS]按键会被点亮。

3.6 测试速度

TH2830 测试速度主要由下列因素决定:

- 积分时间(A/D 转换)
- 平均次数(每次平均的测量次数)
- 测量延时(从启动到开始测量的时间)
- 测量结果显示时间

一般来说,慢速测量时,测试结果更加稳定和准确。你可选择 FAST(快速), MED(中速)和 SLOW(慢速)3 种测试速度。

测试速度设置操作步骤:

- 1. 使用光标键将光标移至速度域,屏幕软键区将显示下列软键。
 - 快速
 - 中速
 - 慢速
- 2. 选择上述软键,设定测试速度 FAST(快速), MED(中速), SLOW(慢速)。

3.7 其它工具

TH2832 测试结果数据以小数点浮动的六位数字显示。小数点锁定功能使 TH2832 以固定小数点位置的方式输出测试结果。该功能同时可用于改变测试结 果显示位数。

工具操作步骤:

按下列操作步骤设置小数点固定显示方式。

- 1. 将光标移至<u>**测量结果显示区域**</u>的主参数或副参数,屏幕软键区将显示下 列软键。
 - 小数自动
 - 小数锁定
 - 小字位置加 +
 - 小数位置减 -

- 2. 按软键**小数自动**将相应光标处的主参数或副参数测试结果的小数点位置恢复成默认的小数点位置。
 - 3. 按软键小数锁定锁定主参数或副参数测试结果的小数点位置。
- **4.** 按软键**小数位置加 +**,每按一次,最后一位显示数字将会添加。显示位数增加一位。
- 5. 按软键**小数位置减**-,每按一次,最后一位显示数字将会省略。显示位数减少一位。

注意:在下列情况下小数点位置锁定功能将自动取消恢复到浮动小数点显示状态。

- 测试功能改变。
- 在偏差测试时,偏差测试方式 (ABS, %, OFF) 被改变。

3.8 <档号显示>页面

按菜单键[**DISP**],再按软键**档号显示**,进入**<档号显示>**页面。在**<档号显示>**页面档号以大字符显示,当前测试结果以正常的小字符显示。如图:

下列测量控制参数可在<档号显示>页面设定。

■ 比较功能 ON/OFF(比较)

本显示页面有 2 个域,他们是: <u>档号显示</u>, <u>比较</u>。每个控制功能域在下面段 落将进行详细说明。

在本显示页面的测量结果/条件显示区域显示了下列测试条件信息。这些监视域看上去很像可设定域,但是这些监视域在本显示页面不能设定。这些监视域

可在<测量设置>页面,<元件测量显示>页面或<用户校正>页面进行设置。

- 测试功能 (**功能 A**)
- 测试频率(频率)
- 测试电平 (**电平**)
- 测试量程(量程)
- 测试速度(速度)
- 直流偏置 (DC 偏置)
- 开路,短路,负载校正 ON/OFF 设置状态(校正)

3.8.1 比较器功能

TH2830 内置比较功能可将被测元件分成最多达 10 个档(BIN1 至 BIN9 及 BIN OUT)。可设定 9 对主参数极限和一对副参数档极限。比较功能打开后的分选和 PASS/FAIL 指示规则如下表。当 TH2830 安装了 HANDLER 接口附件后,可将比较测试结果输出给自动测试系统,实现自动分选测试。这些极限设定只能在<极限列表设置>页面进行设定。比较域让你设定比较功能 ON 或 OFF。

比较打开	AUX ON	AUX OFF
主参数合格	BIN1∼BIN9	BIN1∼BIN9
副参数合格	PASS	PASS
主参数不合格	BIN AUTO	BIN1∼BIN9
副参数合格	FAIL	FAIL
主参数合格	BIN AUX	BIN OUT
副参数不合格	PASS	FAIL
主参数不合格	BIN AUTO	BIN AUTO
副参数不合格	PASS	FAIL

比较功能操作步骤:

- 1. 移动光标至比较域,屏幕软键区显示下列软键。
 - 开
 - 美
- 2. 使用软键,将比较功能设置为 ON(开)或 OFF(关)。

3.9 <档计数显示>页面

按菜单键[**DISP**],再按软键**档计数**,进入**<档计数显示>**页面。在**<档计数显示>**页面显示各档的计数值。如图:

く档ⅰ	┞数显示 >		
参数	:R-X 标	称:0.00000pΩ	计数 :OFF
BIN	LOW [Ω] HI GH[Ω]	COUNT
1			0
2			0
3			0
4			0
5			0
6			0
7			0
8			0
9			0
2nd			[Ω]
AUX :	OFF	OUT :	0
	测量	档号 档	列表 更多 ▶
	显示	見示 ほ数	扫描 1/2
	35/1	AE/I	1-1100 1/2

下列测量控制参数可在<档计数显示>页面设定。

■ 计数功能 ON/OFF(<u>计数</u>)

本显示页面有 2 个域,他们是: <u>档计数显示</u>, <u>计数</u>。每个控制功能域在下面 段落将进行详细说明。

在本显示页面的测量结果/条件显示区域显示了下列测试条件信息。这些监视域看上去很像设定域,但是这些监视域在本显示页面不能设定。这些监视域可在**<极限列表设置>**页面进行设置。

- 测试参数 (<u>参数</u>)
- 标称值 (**标称**)
- 档极限值(<u>**上限/下限**</u>)

档计数功能操作步骤:

执行下列操作,在**<档计数显示>**页面来设定档计数功能 ON/OFF

- 1. 在**<档计数显示>**页面,移动光标至<u>计数</u>域。屏幕软键区将显示下列软键。
 - 开
 - 关
 - 复位计数
- 2. 按软键 开, 打开计数功能 ON。
- 3. 按软键 关 , 关闭计数功能 OFF。
- **4.** 按软键**复位计数**,屏幕助手显示:"复位计数确认吗"。软键区将显示下列 软键。

■ 是

■ 否

- 5. 按软键是,将所有档计数值复位为 0。
- 6. 按软键否,取消档计数值复位操作。

3.9.1 参数

参数区域监视了用户当前测量的"功能"参数,如果用户选择了主副参数对调比较模式,其参数将显示为当前"功能"参数的对调,例如,把"Cp-D"显示为"D-Cp",表示当前把 D 作为主参数比较,而 Cp 作为副参数比较。

3.9.2 标称

标称参数监视了进行档比较的标称值。

3.9.3 档

其正下方显示了极限列表的档序号。"2nd"表示副参数极限。

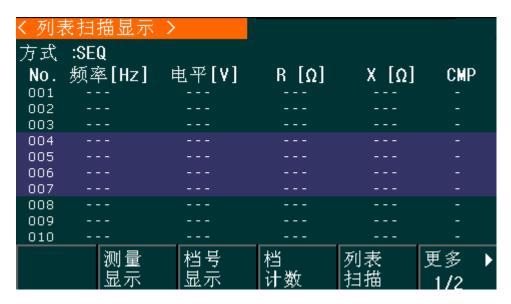
3.9.4 上下限

此区域的正下方监视了极限列表的上下限值。

3.9.5 计数

此区域的正下方显示了当前测量的档计数值。

3.9.6 附属(AUX)


此区域的显示了当前附属档的档计数值。

3.9.7 超差 (OUT)

此区域的显示了当前超差档的档计数值。

3.10 <列表扫描>页面

按菜单键[DISP],再按软键**列表扫描**,进入<**列表扫描显示>**页面。如图:

在该显示页面测试点将被自动扫描测试,测试结果与极限值进行比较。在列表扫描测试过程中,最左面的符号"▶"指示当前扫描测试点。下列测量控制参数可在**<列表扫描显示>**页面设定。

■ 扫描方式(<u>方式</u>)

本显示页面有 2 个域,他们是: <u>列表扫描显示</u>和<u>方式</u>。列表扫描点不能在该 页面下设定,只能在**<列表扫描设置>**页面进行设置。

3.10.1 扫描方式

TH2830 列表扫描功能可对最多 201 个点的测试频率,测试电平或直流偏置进行自动扫描测试。TH2830 有两种列表扫描测试方式: SEQ方式和 STEP方式。在 SEQ 方式下,每按[TRIGGER]键一次,所有列表扫描测试点将被自动测试一遍。在 STEP 方式下,每按[TRIGGER]键一次,仅对一个扫描测试点进行一次测试。

注意:在触发方式为 INT 内部触发时,扫描测试方式 SEQ 及 STEP 不受 [TRIGGER]键控制。将触发方式设置为 MAN 手动触发时,才能使用[TRIGGER]键触发列表扫描测试。

列表扫描方式设置操作步骤:

执行下列操作,在**<列表扫描显示>**页面来设定扫描方式: SEQ/STEP

- 1. 在**<列表扫描显示>**页面,移动光标至<u>方式</u>域。屏幕软键区将显示下列软键。
 - SEQ
 - STEP
 - 2. 按软键 SEQ,选择 SEQ 连续扫描测试方式。
 - 3. 按软键 **STEP**,选择 STEP 单步扫描测试方式。

3.10.2 频率(Hz)

此区域显示了当前扫描的参数模式及其单位。其正下方为扫描列表的参数项。

3.10.3 R[:]X[:]

此区域显示了当前用户扫描的"功能"参数及其单位,仪器在其正下方显示扫

描的结果。

3.10.4 CMP(比较)

此区域显示了当前扫描点的比较结果。结果"L"表示下超,"H"表示上超,""表示上超也不下超

3.11 <测量设置>页面

按菜单键[SETUP],进入**<测量设置>**页面,注意[SETUP]键是**<测量设置>**界面和**<系统设置>**界面公用键。按[SETUP]键,在两个界面之间来回切换。如图:

在<测量设置>页面,下列测量控制参数可被设定。(括号中为可设定域)

- 测试功能(功能)
- 测试频率 (**频率**)
- 测试电平(**电平**)
- 测试量程(**量程**)
- 直流偏置 (**偏置**)
- **■** 测试速度(**速度**)
- 触发方式(**触发**)
- 自动电平控制(**恒电平**)
- 输出电阻(内阻)
- 平均次数(**平均**)
- 电压电流监视 ON/OFF (**V/I 监视**)
- 直流电阻极性(DCR 极性)
- 触发延时(**触发延时**)

- 步进延时(**步进延时**)
- 直流电阻量程 (DC 量程)
- 直流电阻电平 (**DC 电平**)
- 偏差测试 A 模式 (偏差 A)
- 偏差测试 B 模式 (**偏差 B**)
- 偏差测试 A 参考值(参考 A)
- 偏差测试 B 参考值(**参考 B**)

注意:偏差 B 和参考 B 隐藏在软件菜单中,需要光标移动到这两个位置时才会显示,光标移动到这两个位置是,所有内容上移一行

<测量设置>页面中有一些可设定域与**<元件测量显示>**页面中相同,如下面所列。这些设定域前面已经说明过,在本节不再说明。**<测量设置>**页面中的其它设定域将在下面段落进行详细说明。

- 测试功能(功能)
- 测试频率 (<u>频率</u>)
- 测试电平(**电平**)
- 测试量程(**量程**)
- **■** 测试速度(**速度**)
- 直流偏置(偏置)

3.11.1 触发方式

TH2830 有下列 4 种触发方式: INT(内部触发), MAN(手动触发), EXT(外部触发)和 BUS(总线触发)。

当触发方式设置为 INT 方式时, TH2830 连续重复测试。

当触发方式设置为 MAN 方式时,每按一次前面板[TRIGGER]键,TH2830 进行一次测试。

当触发方式设置为 EXT 方式时, HANDLER 接口每接收到一次正脉冲的触发信号, TH2830 进行一次测试。

当触发方式设置为 BUS 方式时,IEEE488 接口每接收到一次"TRIGGER"命令,TH2830 进行一次测试。BUS 触发方式不能在仪器前面板进行设置。

注意: 当 TH2830 正在测试时,接收到一个触发信号,该触发信号将被忽略。 因此需在 TH2830 测试完成后发送触发信号。

当需要从选装的 HANDLER 接口触发 TH2830 时,将触发方式设置为 EXT 方式。

触发方式设置操作步骤

执行下列操作设定除 BUS (总线)触发方式外的其它触发方式。如果需将仪器设定为 BUS 触发方式,需要通过 IEEE488 接口向仪器发送"TRIGger:SOURce BUS"命令。

- 1. 移动光标键至**触发**域。屏幕软键显示区将显示下列软键。
 - 内部
 - 手动
 - 外部
- 2. 使用上述软键设置仪器触发方式 INT(内部),MAN(手动),EXT(外部)。

3.11.2 自动电平控制功能

自动电平控制功能能将实际的测试电平(被测件两端的电压或流过被测件的电流)调整至你所设定的测试电平值。使用该功能能保证被测件两端的测试电压或电流保持恒定。

当采用自动电平控制功能时,测试电平可设定范围限制如下:

恒电压设置范围: 10 mVrms 至 1Vrms

恒电流设置范围: 100 µArms 至 10 mArms

注意: 当恒电平功能有效时,如果电平设定超出上述范围,恒电平功能将被自动设定为OFF。当前所设定的电平值一般作为非恒电平值。

自动电平控制功能设定操作步骤

执行下列操作步骤将恒电平功能设置为 ON 或 OFF。

- 1. 移动光标至**恒电平**域。屏幕软键区显示下列软键。
 - 开
 - 关
- 2. 按软键 开 打开自动电平控制功能 ON

3. 按软键 关 关闭自动电平控制功能 OFF。

(注: TH2830 强制为 OFF 关闭)

3.11.3 平均次数

TH2830 的平均功能将 2 次或多次测试的结果进行平均值计算。平均次数可设置范围为 1 至 255,以 1 为步进。

平均次数设定操作步骤:

执行下列操作步骤设置测量平均次数。

- 1. 移动光标至**平均**域。屏幕软键区显示下列软键。
 - 加 + : 该软键用于增加测量平均次数。
 - 减 -: 该软键用于减小测量平均次数。
- 2. 使用上述软键设定测量平均次数。

3.11.4 电平电流监视功能

电平电流监视功能能让你监视当前被测件两端的实际电压或流过被测件的实际电流值。电压监视值显示在**<元件测量显示>**页面的 <u>Vm</u> 监视域。电流监视值显示在**<元件测量显示>**页面的 **Im** 监视域。

注意: 仪器的校正功能对电平监视功能有影响。因此当校正数据发生变化时,电平监视值也会发生变化。校正功能开路/短路/负载的 ON/OFF 状态变化也会对电平监视值产生影响。

电平电流监视功能设置操作步骤:

执行下列操作步骤设置电平监视功能 ON 或 OFF。

- 1. 移动光标至 **V/I 监视**域。屏幕软键区显示下列软键。
 - 开
 - 美
- 2. 按软键 **开** 将电压电平监视功能设置为 **ON**。 按软键 **关** 将电压电平监视功能设置为 **OFF**。

3.11.5 触发延时

TH2830 触发延时指从仪器被触发到开始测量之间的延时时间。延时功能让你可设定触发延时时间。当使用列表扫描测试功能时,在每个扫描测试点都将延时所设定的延时时间。触发延时时间设定范围为: 0 s 至 60 s,1 ms 为步进。当仪器被用在自动测试系统中时,触发延时功能很有用。当仪器被 HANDLER 接口

触发后, 经过触发延时时间可以保证被测件与测试端可靠接触。

触发延时功能设置操作步骤:

执行下列操作步骤设置测量触发延时时间。

移动光标至**触发延时**域。

使用数值键输入延时时间。按下一个数字键后, 屏幕软键区显示下列单位软键。

- msec
- sec

3.11.6 步进延时

TH2830 步进延时指从仪器开始输出激励信号到开始测量之间的延时时间。延时功能让你可设定触发延时时间。触发延时时间设定范围为: 0 s 至 60 s,1 ms 为步进。当仪器测量 DCR 或者 Rd 参数时,比如 Lp-Rd,在两种激励信号交替测量感性器件时保证测量准确是非常重要的功能。

触发延时功能设置操作步骤:

执行下列操作步骤设置测量触发延时时间。

移动光标至<u>步进延时</u>域。

使用数值键输入延时时间。按下一个数字键后, 屏幕软键区显示下列单位软键。

- msec
- sec

3.11.7 输出电阻

TH2830 提供两种输出电阻可供选择: 100Ω , 30Ω 。

当测试电感时,为了与其他型号的测试仪进行数据对比,必须保证有相同的输出电阻值。

注意: 当使用偏流输出时默认为 100Ω。

输出电阻设置操作步骤:

执行下列操作步骤设置仪器的输出电阻。

- 1. 移动光标至内阻域。屏幕软键区显示下列软键。
 - **■** 100Ω
 - 30Ω

2. 按软键 100Ω 选择 100Ω 的输出电阻。按软键 30Ω 选择 30Ω 的输出电阻。

3.11.8 直流电阻极性

TH2830 可提供两种直流电阻测试模式: ALT, FIX。但目前只允许使用 ALT 模式。ALT 模式为正、负直流电压测量,FIX 为锁定正电压测量。ALT 模式有利于测量电感的直流电阻时消磁,测量值更准确。

执行下列操作步骤设置直流电阻测量极性。

- 1. 移动光标至 **DCR 极性**域,屏幕软键区域显示下列软键:
 - ALT
 - FIX
- 2. 按软键 **ALT** 选择交替模式。按软键 **FIX** 选择锁定正电平模式。目前只提供 **ALT** 模式。

3.11.9 直流电阻量程

TH2830 可单独设置直流电阻量程,具体量程范围与 LCR 的量程范围相同。 具体量程范围和操作方法参见 **3.1.2**。

3.11.10 直流电平

TH2830 直流电平固定为 1V,不可更改。TH2832 直流电平范围为 50mV-2V,分辨率 1mV。

直流电平功能设置操作步骤:

执行下列操作步骤设置直流电平值。

移动光标至 DC 电平域。

- 1. 使用数值键输入电平。按下一个数字键后,屏幕软键区显示下列单位软键。
 - mV

 - 2. 输入数字后,按单位软键 mV 或者 V,就自动换算成最终电平值。

3.11.11 偏差测试功能

偏差测试功能能将偏差值代替实际测试值直接显示在屏幕上。偏差值等于当前实际测试值减去预先设置的参考值。使用该功能可以方便地观察被测元件参数随温度,频率,偏置等条件的变化情况。偏差测试功能可用于主参数或副参数,或者同时用于主副参数。仪器提供两种偏差测试方式如下:

■ ΔABS 方式(绝对偏差方式)

当前显示的偏差为被测件的测试值与设定的参考值之差。计算 ΔABS 偏差的 公式如下:

$$\triangle ABS = X - Y$$

这里, X: 当前被测件的测量值。

Y: 预先设定的参考值。

■ **△%** 方式(百分比偏差方式)

当前显示的偏差为被测件的测试值与设定的参考值之差除以参考值所得到的百分比误差。计算 Δ %偏差的公式如下:

$$\Delta\% = (X - Y) /Y \times 100 [\%]$$

这里, X: 当前被测件的测量值。

Y: 预先设定的参考值。

偏差测试功能操作步骤:

执行下列操作步骤设置仪器的偏差测试功能。

1. 移动光标至参考 A 域输入主参数的参考值。屏幕软键区显示下列软键。

■ 测量

当参考元件连接至被测试端,按下软键**测量**。**TH2830** 对参考元件进行测试,测试结果被自动输入作为参考 **A** 的值。

- 2. 使用软键测量或使用数值键输入主参数的参考值。
- 3. 移动光标至参考 B 域输入副参数的参考值。屏幕软键区显示下列软键。

■ 测量

当参考元件连接至被测试端,按下软键**测量**。**TH2830** 对参考元件进行测试,测试结果被自动输入作为参考 B 的值。

- 4. 使用软键**测量**或使用数值键输入副参数的参考值。如果主参数和副参数的参考值已经使用**测量**软键在步骤 2 中进行了设定,可跳过本步骤。
 - 5. 移动光标至**偏差 A** 域。屏幕软键区显示下列软键。
 - ABS
 - %
 - 关
 - 6. 使用上述软键,设定主参数的偏差方式。
 - 7. 移动光标至**偏差 B** 域。屏幕软键区显示下列软键。
 - ABS
 - %

■ 美

8. 使用上述软键,设定副参数的偏差方式。

3.12 <用户校正>页面

按菜单键[SETP],再按软键用户校正,进入<用户校正>页面。如图:

<用户校正>页面的开路,短路和负载校正功能可用于消除分布电容,寄生阻抗和其它测量误差。TH2830 提供两种校正方式。一种是采用插入法对所有频率点进行开路和短路校正。另外一种是对当前设定频率点进行开路,短路和负载校正。可提供201个校正点。下列测量控制参数设定域可在<用户校正>页面设定。

- 开路校正(开路)
- 短路校正(短路)
- 负载校正(**负载**)
- 电缆长度选择(电缆)
- 单路/多路校正方式选择(<u>方式</u>)
- 负载校正测试功能(**功能**)
- 校正点 (**校正点**)
- 开路,短路和负载校正的频率(**频率**)
- 频率点的参考值(参考 A,参考 B)
- 频率点的开路值(**开路 A,开路 B**)
- 频率点的短路值 (<u>短路 A,短路 B</u>)
- 频率点的负载值(**负载 A,负载 B**)

本显示页面有 16 个域,他们是:<u>用户校正</u>,<u>开路</u>,<u>短路</u>,<u>负载</u>,<u>电缆</u>,<u>方</u>

 $\underline{\mathbf{T}}$, <u>功能</u>, <u>校正点</u>, <u>频率</u>, <u>参考 A</u>, <u>参考 B</u>, <u>开路 A</u>, <u>开路 B</u>, <u>短路 A</u>, <u>短路 B</u>, <u>负载 B</u>, <u>每个控制功能域在下面段落将进行详细说明。</u>

- 开路校正的实际测试结果。(**开路 A**, **开路 B**)
- 短路校正的实际测试结果。(**短路 A, 短路 B**)
- 负载校正的实际测试结果。(**负载 A, 负载 B**)

注意: 用户校正的规则是如果开路或者短路打开,而且点频清零对应的测量频率打开,优先使用点频校正的数据。

3.12.1 开路校正

TH2830 的开路校正功能能消除与被测元件相并联的杂散导纳(G, B)造成的误差。如图 3-1 所示。

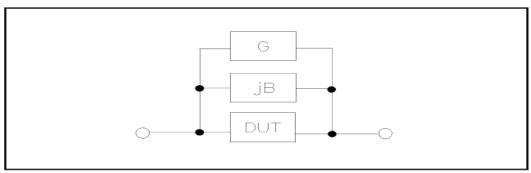


图 3-1 杂散导纳

TH2830 采用下列两种开路校正数据:

■ TH2830 不管你当前设定的频率是多少,对 50Hz – 100kHz 范围内的 34 个固定的频率点进行开路校正测试。移动光标至<u>开路</u>域,使用软键**开路全频清零**执行全频开路清零。

.....

注意: TH2832 是对 20Hz – 200kHz 范围内的 41 个固定的频率点进行开路校正测试。除 41 个频率点外,其它频率点的开路校正数据将采用插入计算法计算出不同测试频率在不同量程下的开路校正数据。

■ TH2830 可以在**<**用户校正**>**页面的<u>频率</u>,校正点域可设定 201 个开路校正频率点:移动光标至频率,使用软键开路单频清零分别对当前设定频率进行开路

校正。

开路校正功能操作步骤:

开路校正包括采用插入计算法的全频开路校正和对所设定的相应频率点进行的单频开路校正。执行下列操作步骤利用插入计算法对全频率进行开路校正,单频开路校正详见"负载校正"操作说明。

- 1. 移动光标至开路设定域,屏幕软键区显示下列软键。
 - 开
 - 美
 - 开路全频清零
 - DCR 开路
- 2. 将测试夹具连接到仪器测试端。夹具开路,没有连接到任何被测元件。
- 3. 按软键**开路全频清零**,**TH2830**将对 **34**个频率点的开路导纳(电容和电感)进行测量。开路全频校正大约需要 **50** 秒的时间。 在开路全频校正过程中,显示下面软键。

■ 中止

该软键可中止当前的开路校正测试操作。保留原来的开路校正数据不变。

- 4. 按软键 **DCR 开路**, TH2830 将进行直流电阻功能下开路电阻的测量。
- 5. 按软键 开,使开路校正有效,TH2830 将在以后的测试过程中进行开路校正计算。如果频率。设置为 OFF,开路校正计算采用插入法所计算出的当前频率的开路校正数据。如果频率设置为 ON,同时当前测试频率等于频率,则频率的开路校正数据将被用于开路校正的计算。
- **6**. 按软键 **关** , 关闭开路校正功能。以后的测量过程中将不再进行开路校正的计算。

3.12.2 短路校正

TH2830 的短路校正功能能消除与被测元件相串联的寄生阻抗(R, X)造成的误差。如图 3-2 所示。

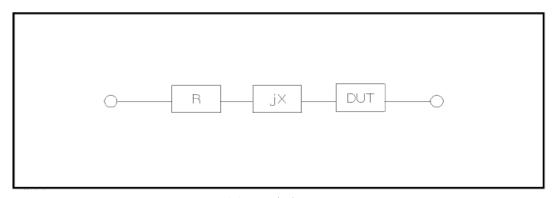


图 3-2 寄生阻抗

TH2830 采用下列两种短路校正数据。

■ TH2830 不管你当前设定的频率是多少,对 50Hz – 100kHz 范围内的 34 个固定的频率点进行短路校正测试。移动光标至<u>短路</u>域,使用软键**短路全频清零**执行全频短路清零。34 个固定频率点与开路校正所述相同。

注意: TH2832 是对 20Hz – 200kHz 范围内的 41 个固定的频率点进行短路校正测试。除 41 个频率点外,其它频率点的短路校正数据将采用插入计算法计算出不同测试频率在不同量程下的短路校正数据。

■ TH2830 可以在**<用户校正>**页面的<u>校正点</u>域可设定 201 个开路校正频率 点:移动光标至**频率**,使用软键**短路单频清零**分别对设定频率进行短路校正。

短路校正功能操作步骤:

短路校正包括采用插入计算法的全频短路校正和对所设定的2个频率点进行的单频短路校正。执行下列操作步骤利用插入计算法对全频率进行短路校正,单频短路校正详见"负载校正"操作说明。

- 1. 移动光标至短路设定域,屏幕软键区显示下列软键。
 - 开
 - 关
 - 短路全频清零
 - DCR 短路
- 2. 将测试夹具连接到仪器测试端。将测试夹具用短路片短路。
- 3. 按软键**短路全频清零**,TH2830将对34个频率点的短路寄生阻抗(电阻和电抗)进行测量。短路全频校正大约需要50秒的时间。在短路全频校正过程中,屏幕显示下面软键。
 - **中止**: 该软键可中止当前的短路校正测试操作。保留原来的短路校正数据不变。
 - 4. 按软键 **DCR 短路**, TH2830 将进行直流电阻功能的短路电阻的测量。
- 5. 按软键 开,使短路校正有效,TH2830 将在以后的测试过程中进行短路校正计算。如果频率设置为 OFF,短路校正计算采用插入法所计算出的当前频率的短路校正数据。如果频率设置为 ON,同时当前测试频率等于频率,则频率的短路校正数据将被用于短路校正的计算。
- 6. 按软键 **关** ,关闭短路校正功能。以后的测量过程中将不再进行短路校正的计算。

3.12.3 负载校正

TH2830 的负载校正功能利用在设定在校正点的实际测试值与标准参考值之间的传递系数来消除其它测试误差。由此可见可以在校正点设定频率进行开路,短路和负载校正。201 个校正点可以在校正点设定,频率可以在频率设定域设置。标准参考值可在参考 A 和参考 B 设定域设置。在设置标准参考值之前必须在功能域设定好标准值的测试功能。光标移至频率,屏幕显示软键负载校正。按负载校正软键,对标准进行负载校正测试。

负载校正功能操作步骤:

按照下列步骤对设置频率点进行开路/短路/负载校正测试。

- 1. 移动光标至频率设定域。屏幕将显示下列软键。
 - **开**:按该键使当前设定频率下的开路/短路/负载校正测试数据有效。
 - 关:按该键使当前设定频率下的开路/短路/负载校正测试数据无效。
 - **开路单频清零**:按该键对频率执行一次开路校正测试。
 - **短路单频清零**:按该键对频率执行一次短路校正测试。
 - **负载校正**:按该键对频率执行一次负载校正测试。
- 2. 按软键 开,频率设定域显示原先设置的开路/短路/负载校正频率。
- 3. 使用数值键输入校正频率。当按下任意一个数字键后,屏幕软键区显示可用频率单位软键(Hz, kHz 和 MHz)。
 - 4. 将测试夹具连接至仪器测试端。
 - 5. 使测试夹具开路。
- 6. 按软键**开路单频清零**对当前设定频率进行开路校正。开路校正测试结果(**G**, **B**)将显示在助手行(最下面一行)。
 - 7. 移动光标至开路设定域。
 - 8. 按软键 开,在以后每次测量过程中对设定频率进行开路校正计算。
 - 9. 移动光标至频率设定域。设定所需校正的频率。
 - 10. 将测试夹具短路。
- 11. 按软键**短路单频清零**对当前设定频率进行短路校正。短路校正测试结果(R,X)将显示在助手行(最下面一行)。
 - **12**. 移动光标至**短路**设定域。
 - 13. 按软键 开, 在以后每次测量过程中对设定频率进行短路校正计算。
 - 14. 准备好一个测量标准器件。
 - 15. 将光标移至功能设定域。

- 16. 设定标准器件所需测量的功能参数。
- 17. 移动光标至所设定频率的参考 A 设定域。
- 18. 使用数值键和单位软键,输入标准器件主参数的参考值。
- 19. 将光标移动到参考 A 右边的参考 B 设定域。
- 20. 使用数值键和单位软键,输入标准器件副参数的参考值。
- 21. 移动光标至对应的频率设定域。
- 22. 将标准器件连接到测试夹具。
- **23**. 按软键**负载校正**,仪器执行一次负载校正。标准器件实际测试结果显示在**测量A**和**测量B**监视域。
 - 24. 移动光标至<u>负载</u>设定域。
 - 25. 按软键 开,在以后每次测量过程中对设定频率点进行负载校正计算。

3.12.4 负载校正测试功能

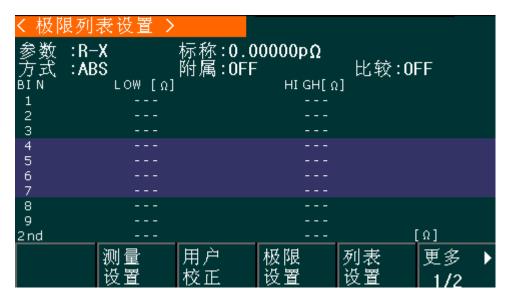
当进行负载校正时,必须事先输入标准器件的参考值。参考值的测试参数应 与设定的负载校正测试功能一致。

负载校正功能利用在设定频率点实际测试值与标准参考值之间的传递系数 来消除其它测试误差。负载校正测试功能仅用于计算传递系数。

3.12.5 点频校正

本仪器提供多达 201 个点的点频清零功能。具体步骤参考 3.6.3 的负载校正过程,先选择校正点,再移动光标到频率位置,选择打开,然后可以输入对应的频率。执行**短路单频清零**,**开路单频清零**,就进行了开短路单频清零。

注意:由于每次只能选择一个频率点的状态显示在屏幕,无法查看 201 个点的完整状态,需要特别提醒用户注意该问题,易导致未知的错误校正数据的引用。


针对该问题,仪器提供了 201 个点的点频校正数据的快速清除和复位,在工具页面的清除校正数据功能,可以把 201 个点的校正数据复位并全部关闭。

3.12.6 电缆长度选择

当前可选电缆长度为 0 m。

3.13 <极限列表设置>页面

按菜单键[SETP],再按软键**极限设置**,进入<极限列表设置>页面。如图:

在该页面可以对仪器比较器功能进行设置。TH2830 可设定 9 个主参数的档极限以及一个副参数的档极限值。被测结果可分选成最多 10 个档(BIN1 至 BIN9 和 BIN OUT)。如果被测件的主参数在 BIN1 至 BIN9 的极限范围内,但是其副参数不在极限范围内,这时被测件被分选到附属档中。当 TH2830 安装了HANDLER接口,并运用在自动测试分选系统时,比较功能特别有用。下列比较功能的极限参数只能在<极限列表设置>页面进行设定。

- 测试参数 (<u>参数</u>)
- 比较功能极限方式(方式)
- 标称值(标称)
- 附属档 ON/OFF (附属)
- 比较功能 ON/OFF (比较)
- 各档下极限值(LOW)
- 各档上极限值(<u>HIGH</u>)

3.13.1 对调参数

对调参数功能可将<u>参数</u>设定域中的主参数和副参数互换。例如:当测试参数为: Cp-D 时,参数互换功能将测试参数改为: D-Cp。这时 D 可设定 9 对比较极限,而 Cp 可设定 1 对比较极限。

对换参数功能操作步骤:

执行下列操作步骤将主参数和副参数互换。

- 移动光标至参数设定域,屏幕软键区将显示下列软键。
 - 对调参数

- 按软键对调参数将主参数与副参数互换。
- 3. 再按软键**对调参数**将主参数与副参数互换,恢复到原先设置。

3.13.2 比较功能极限模式

比较功能提供下列两种主参数极限设置模式。如图 3-3 所示。

■ 容差方式

容差方式下,将与标称值(标称值在<u>标称</u>域设定)的偏差值设定为比较极限值。偏差值有两种方式:一种是百分比偏差,另外一种是绝对值偏差。

■ 连续方式

连续方式下,将测试值范围作为比较极限值。比较极限值必须按从小到大的顺序设置。

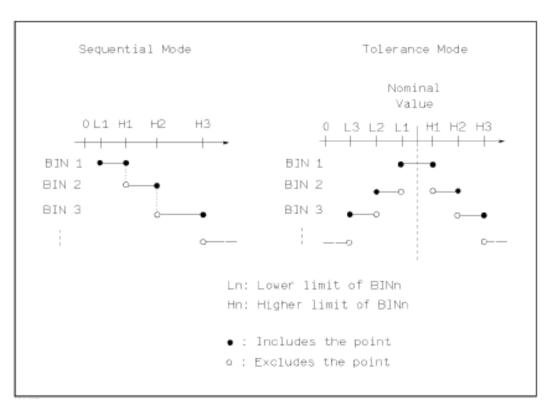


图 3-3 容差方式和连续方式

注意: 当设定容差方式的极限值时,误差范围必须按照由小到大设置。如果BIN1 设置的误差范围最大,那么所有的被测件将分选到 BIN1 档中。

容差方式下,下极限不一定要小于标称值,上极限不一定要大于标称值。各 档极限范围之间可以不连续,也可以有重叠范围。

比较功能极限方式设置步骤:

1. 移动光标至<u>方式</u>设定域,屏幕软键区显示下列软键。

■ % TOL

该软键用于设定极限模式为: 百分比偏差的容差方式。

ABS TOL

该软键用于设定极限模式为:绝对偏差的容差方式。

■ SEQ MODE

该软键用于设定极限模式为:连续方式

■ TWO ABS

2. 选择上述软键,设定极限方式。

3.13.3 容差方式标称值设置

当选择容差方式作为主参数的极限模式时,需要设定标称值。标称值可以在 仪器显示范围内任意设定。

当选择连续方式作为主参数的极限模式时,可以设定标称值。但是在连续方式下不需要使用标称值。

标称值设定操作步骤:

- 1. 移动光标至标称设定域。
- 2. 使用数值键输入标称值。当数据输入后,可使用下标软键(p, n, μ , m, k, M, *1)输入标称值。按软键*1 输入标称值时,标称值根据主参数选择 F, H 或 Ω 作为默认单位。

3.13.4 比较器功能 ON/OFF

TH2830 可设定 9 个主参数的档极限以及一个副参数的档极限值。测试结果可分选成最多 10 个档(BIN1 至 BIN9 和 BIN OUT)。如果被测件的主参数值在BIN1 至 BIN9 的极限范围内,但是其副参数不在极限范围内,这时被测件被分选到附属档中。当 TH2830 安装了 HANDLER 接口,并运用在自动测试分选系统时,比较功能特别有用。

比较器功能 ON/OFF 设置操作步骤:

- 1. 移动光标至**比较**设定域。屏幕软键区显示下列软键。
 - 开
 - 关
- 2. 使用上述软键将比较功能设置为 ON(开)或 OFF(关)

3.13.5 附属档 ON/OFF

当需要对副参数进行分选时,可在 2nd 的上限和下限设定域设置副参数的极

限值。

对于副参数分选,有三种情况叙述如下:

- 在**<极限列表设置>**页面中,没有设定副参数的上下极限值。
- 在**<极限列表设置>**页面中,已经设定副参数的上下极限值。但是**附属**档功能设置为 **OFF**。

此时只有副参数合格的器件,主参数才能根据分选极限进行分选。如果副参数不合格,即使其主参数在设定的极限范围内,全部被分选到 BIN OUT 档中。

■ 在**<极限列表设置>**页面中,已经设定副参数的上下极限值。同时**附属**档功能设置为 **ON**。

若主参数不在设定的极限范围内,则被分选到 BIN OUT 档中。若被测件的主参数在极限范围内,但其副参数不在极限范围内,该被测件将被分选到附属档中。

注意: 当副参数仅设定了下极限值,附属档设置为 ON,如果被测件的主参数 在极限设定范围内,而副参数值小于或等于副参数下限值时,被测件被分选到附属档中。同样当副参数仅设定了上极限值,附属档设置为 ON,如果被测件的主参数在极限设定范围内,而副参数值大于或等于副参数上限值时,被测件被分选到 附属档中。

附属档功能 ON/OFF 设置操作步骤:

- 移动光标至附属设定域。屏幕软键区显示下列软键。
 - 开
 - 美
- 2. 使用上述软键将**附属**功能设置为 ON(开)或 OFF(关)

3.13.6 上下极限

TH2830 可设定 9 个主参数的档极限以及一个副参数的档极限值。测试结果可分选成最多 10 个档(BIN1 至 BIN9 和 BIN OUT)。这些主参数上下极限可在BIN1 至 BIN9 的<u>上限</u>和<u>下限</u>设定域中设置。副参数的上下极限可在 2nd 的<u>上限</u>和下限设定域中设置。

3.13.7 上下极限设置操作步骤

执行下列步骤设置分选的极限

- 1. 首先设定比较功能的测试参数,标称值以及主参数的极限方式。
- 2. 移动光标至档 1 的<u>下限</u>设定域。如果你选择容差方式执行步骤 3 至步骤 6;如果你选择连续方式执行步骤 7 至步骤 11。

- 3. 在档 1 的<u>下限</u>设定域使用数值键输入档 1 的下限值,当数据输入后,可使用下标软键(\mathbf{p} , \mathbf{n} , $\mathbf{\mu}$, \mathbf{m} , \mathbf{k} , \mathbf{M} , *1)确定输入数据。按软键*1 时,极限值以 \mathbf{F} , \mathbf{H} 或 Ω 作为默认单位。在档 1 的<u>下限</u>域输入档 1 的极限值后,档 1 的下限自动设置为-(绝对值极限),档 1 的上限自动设置为+(绝对值极限)。
- 4. 光标自动跳到档 2 的<u>下限</u>设定域。重复步骤 4,直至输入档 9 的极限值。随后光标将自动跳至 2nd 的下限设定域。
 - 5. 输入副参数的下限值后,光标将自动跳至 2nd 的上限设定域。
 - 6. 输入副参数的上限值。
- 7. 在档 1 的<u>下限</u>设定域使用数值键输入档 1 的下限值,当数据输入后,可使用下标软键(p, n, μ , m, k, M, *1)确定输入数据。按软键*1 时,极限值以 F, H 或 Ω 作为默认单位。
- 8. 输入档 1 的下极限值后,光标自动跳至档 1 的<u>上限</u>设定域。输入档 1 的 上极限值。
- 9. 光标将自动跳至档 2 的<u>上限</u>设定域。因为连续方式时,档 2 的下限等于档 1 的上限值。输入档 2 的上极限。
- 10. 重复步骤 9, 直至输入档 9 的上限。随后光标将自动跳至 2nd 的<u>下限</u>设定域。输入副参数的下限值。
 - 11. 光标将自动跳至 2nd 的上限设定域。输入副参数的上限值。

3.14 <列表扫描设置>页面

按菜单键[SETUP],再按软键**列表设置**,进入<列表扫描设置>页面。如图:

TH2830 的列表扫描功能可对最多 201 个点的测试频率,测试电平或偏置电压进行自动扫描测试。在**<列表扫描设置>**页面可对下列列表扫描参数参数进行设定。

- 扫描方式(模式)
- 扫描参数设置(频率[Hz],电平[V],电平[I],偏置[V],偏置[I])

- 扫描测试点设置(扫描点)
- 极限参数选择(LMT)
- 上下极限值(上限,下限)

3.14.1 方式

方式菜单和<列表扫描显示>页面之方式一样。

3.14.2 测试参数可选项

扫描参数可以是: 频率[Hz], 电平电压方式[V], 电平电流方式[I], 偏置电压方式[V], 偏置电流方式[I]。**TH2830 提供双扫描参数设定和扫描,但是两个参数必须不同,而且都要设定值。**

测试参数可选项设置步骤:

- 1. 将光标移动到方式下面一行,屏幕软键显示下列软键:
 - 频率 [Hz]
 - 电平 [V]
 - 电平 [A]
 - 偏置 [V]
 - 偏置 [A]
- 2. 按其中一个软键选择你要的列表扫描的参数。

3.14.3 扫描参数设置

可将光标移到表格中进行各项扫描参数的设置:即在<u>频率(HZ)、LMT、上限和下限</u>对应表格处,由面板数字键盘输入测试频率/电平/偏置的具体数据,以及每一项用于比较的上下限,和所选的用于比较的主副参数。设定后,如觉得不需要此输入,则可执行"软键区域"的"删除行"功能删除该行数值。

其中,**LMT** 区域的正下方,参数"A"表示用测量结果的主参数与表格中的上下限进行比较。参数"B"表示用测量结果的副参数与表格中的上下限进行比较。"--"表示不进行比较。"软键区域"有相应的选项,按软键**限定数据 A**,LMT 区域则会显示"A";按软键**限定数据 B**,LMT 区域则会显示"B";按软键 **关**,LMT 区域及相应一行的上限、下限会被清零,显示"---"。

3.15 < 工具>页面

按菜单键[SETUP],切换到<测量设置>页面,再按第 5 个软件进入下个软件菜单,再按软键工具,进入<工具>页面如图:

 〈工具 〉
 校正数据
 :清除校正数据

 空夹具判别
 : 关闭

 锁定标称量程
 : 关闭

 自动返回数据
 : 关闭

 HDL 有效时间
 : 保持

 测量
 用户
 极限
 列表
 更多
 ▶

 设置
 校正
 设置
 0
 1/2

TH2830 的工具页面提供一些特殊功能以及客户定制功能。

- 校正数据
- 空夹具判别
- 锁定标称量程
- 自动返回数据
- HDL 有效时间

3.15.1 校正数据

可对用户校正界面的 201 个点的用户单点校正数据进行全部清零操作,光标移动到校正数据,可按软件进行 201 个点用户单点校正数据的清零,有提示框操作指示。

3.15.2 空夹具判别

该功能可帮助用户排查测试夹具的接触不良或者测试夹具短路的情况。如果该功能打开,仪器自动根据**极限设置**页面里的标称值,把标称值乘 0.05 以后的值作为下限,把标称值乘 100 的值作为上限,超出这个上下限范围的值被认为夹具开路或者短路,仪器会停止输出 HANDLER 的分选结果信号,防止导致错误的判断结果输出。

3.15.3 锁定标称量程

该功能是为了锁定量程以达到快速测量的目的。如果该功能打开,仪器会根据**极限设置**界面的标称值锁定对应量程,而不管测量**设置界面**的量程是否是AUTO 状态都是锁定量程进行测量。

3.15.4 自动返回数据

该功能针对数据通讯,通过 RS-232C 或者 USB 接口传输数据时起作用。一般的数据传输模式是通过对仪器发送 FETCH? 指令,仪器把测量数据通过通讯

口送出。一旦自动返回数据被打开,仪器每次测量的数据自动通过通讯口送出,而不需要 FETCH? 指令。

注: 使用该功能时,请考虑上位机是否准备好随时接受仪器不断发送的数据。

3.15.5 HDL 有效时间

针对 HANDLER 接口的输出信号的电平保持时间设置。HOLD 状态表示接口的输出信号一直保持直到有新的改变。也可以用键盘输入保持时间,支持 0~2S, 0 就是 HOLD 状态。

第4章 [SYSTEM]菜单键说明和文件管理

4.1 <系统设置>页面

按菜单键[SETUP],进入<系统设置>页面。如图:

 〈系统设置〉

 仪表功能:电桥
 偏置源:INT

 合格讯响:高长
 总线方式:GP IB

 不良讯响:高长
 GP IB地址: 7

 显示语言:中文
 只讲:关闭

 口令:关闭
 波特率:9.60000k

 菜单保持:HOLD

 日期/时间:11-09-09 23:21:11

 系统
 测量

 设置
 数认

 系统
 设置

这一功能页面显示了大多数系统设置菜单,包括仪表功能,讯响打开,合格讯响,不良讯响,系统语言,口令设置,总线方式,GPIB地址,只讲,偏置源,波特率,时间等。

注意: 当该界面下所有菜单选项设置完毕后, 自动保存设置。

4.1.1 仪器功能

此选项是预留功能,对 TH2830 LCR 系列其他变压器选项不可选。

4.1.2 合格讯响

此区域用于控制和显示当仪器的测量比较结果为合格品时的报警发声模式。

合格讯响设置操作步骤:

移动光标至**合格讯响**域。屏幕软键区显示下列软键。

■ 高长

该软键用于选择发出高而长的报警声。

■ 高短

该软键用于选择发出高而短的报警声。

■ 低长

该软键用于选择发出低而长的报警声。

■ 两短

该软键用于选择发出两声低而短的报警声。

■ 关闭

该软键用于选择不发出报警声。

4.1.3 不良讯响

此区域用于控制和显示当仪器的测量比较结果为不良品时的报警发声模式。

不良讯响设置操作步骤:

移动光标至不良讯响域。屏幕软键区显示下列软键。

■ 高长

该软键用于选择发出高而长的报警声。

■ 高短

该软键用于选择发出高而短的报警声。

■ 低长

该软键用于选择发出低而长的报警声。

■ 两短

该软键用于选择发出两声低而短的报警声。

■ 关闭

该软键用于选择不发出报警声。

4.1.4 显示语言

此区域用于控制和显示当前仪器的操作语言模式。

语言设置操作步骤:

移动光标至显示语言域。屏幕软键区显示下列软键。

English

该软键用于选择英文操作语言。

■ 中文

该软键用于选择中文操作语言。

4.1.5 口令

此区域显示了当前的密码保护模式。

口令设置操作步骤:

移动光标至口令域。屏幕软键区显示下列软键。

■ 关闭

该软键用于关闭密码保护。

■ 锁定系统

该软键用于打开密码保护,包括文件保护和开机密码。

■ 锁定文件

该软键用于用户的文件保护。

■ 修改口令

该软键用于修改密码。操作如下,按键**修改口令**屏幕提示输入新口令,由键盘输入后,屏幕提示确认新口令,重复新口令,至此口令修改完成。

注: 出厂默认密码为 0147852

4.1.6 总线方式

总线方式用于选择仪器使用 RS232C、GPIB、USBTMC 或 USBCDC。 总线方式设置操作步骤:

- 1. 移动光标至总线方式域。屏幕软键区显示下列软键。
 - **■** RS232C
 - GPIB
 - USBTMC
 - USBCDC
- 2. 按相应的软键选择需要的接口总线。

注: 必须安装了本公司的 GPIB 选件,才支持 GPIB 模式。

4.1.7 GPIB 地址(预留功能)

此区域用于控制和显示当前的仪器的 GPIB 接口总线地址。

总线地址设置操作步骤:

移动光标至 GPIB 地址域。屏幕软键区显示下列软键。

■ 加 +

该软键用于增加本机的总线地址。

■ 减 -

该软键用于减小本机的总线地址。

4.1.8 只讲(Talk Only)

只讲功能用于控制仪器每次测量都通过它的 RS232C、GPIB、USBTMC 或 USBCDC 接口向总线发出测量结果。当只讲功能置于 ON 时仪器将不接受电脑的控制。

只讲设置操作步骤:

- 1. 移动光标至只讲域。屏幕软键区显示下列软键。
 - 打开
 - 关闭
- 2. 按软键 打开 打开只讲功能。按软键 关闭 关闭只讲功能。

4.1.9 偏置源

偏置源功能用于选择仪器所使用的直流偏置源。(TH2832 才有内偏置)

■ INT 模式

仪器内部标准配置的直流偏压源

30Ω 输出电阻(-1.5V \sim +1.5V),直流偏流源(-50mA \sim 50mA)。

100 Ω 输出电阻(-5V \sim +5V),直流偏流源(-50mA \sim 50mA)。

■ TH1778

可和 TH1778 偏流源连接, 最多支持 6 台 TH1778 连接最大 120A 偏流。

注: 当启用直流偏置源时只能用 100 Ω 输出电阻。

4.1.10 波特率

波特率用于选定仪器 RS232 接口的波特率。仪器可以从 9.600k 到 115.200k 进行选择。

波特率设置操作步骤:

移动光标至**波特率**域。屏幕软键区显示下列软键。

■ 加+

该软键用于增加本机的波特率。

■ 减 -

该软键用于减小本机的波特率。

4.1.11 菜单保持

TH2830 系列产品的软键区域,可以设置为 HOLD,或者固定的时间。当为 HOLD 时,软键菜单一直显示,而当设置为一定的时间,软键菜单保持到设置的时间后自动隐藏,当操作面板的任意键又触发软键菜单显示,再重新计时。

菜单保持设置操作步骤:

移动光标至**菜单保持**域。屏幕软键区显示下列软键。

■ 加+

该软键用于增加菜单保持时间。

■ 减 -

该软键用于减小菜单保持时间。

4.1.12 时间

当光标移动到时间区域时,可以修改系统时间,包括年、月、日、小时、分钟、秒。

4.2 <文件管理>页面

TH2830 系列仪器可以将用户设定的参数以文件的形式存入仪器内部非易失性存储器,当下次要使用相同的设定时,用户无需重新设定这些参数,只需加载相应的文件,就可以得到上次设定的参数。从而大大地节省了用户重复设定参数的时间,提高了生产效率。

在**测量显示**界面或**测量设置**界面的下级软键菜单,按软键**[文件管理]**可以进入<文件管理>功能页面。如图:

4.2.1 单组元件设定文件(*.STA)

仪器内部最多可以保存 40 组不同的单组元件设定文件(*.STA 文件),外部存储优盘可以显示/操作 500 组不同的单组元件设定文件(注:优盘为选购件)。

在以下页面的[文件管理]菜单中,下列数据将以文件的形式保存或加载,称之为*.STA 文件。

■ 〈测量设置〉页面的控制设定参数

- 测试功能
- 测试频率
- 测试电平
- 测试量程
- 测试速度
- 电压偏置
- 电流偏置
- 触发方式
- 自动电平控制
- 触发延时
- 步进延时
- DCR 极性
- DC 量程
- DC 电平
- 输出电阻
- 平均次数
- 电压电平监视 ON/OFF
- 电流电平监视 ON/OFF
- 偏置电流隔离 ON/OFF
- 偏差测试 A 模式
- 偏差测试 B 模式
- 偏差测试 A 参考值
- 偏差测试 B 参考值

■ 〈档计数显示〉页面的控制设定参数

- 档计数 (计数/不计数)
- 〈极限列表设置〉页面的控制设定参数
 - 测试功能(对调参数)
 - 标称值(参考值)

- 比较方式 (%-TOL/ABS-TOL/SEQ-MODE)
- 附属档 (ON/OFF)
- 比较功能 (ON/OFF)
- 各档的上限值和下限值

■ 〈列表扫描设置〉页面的控制设定参数

- 列表扫描方式(SEQ/STEP)
- 列表扫描参数(频率/电平/偏置)
- 全部扫描参数的测试点
- 全部测试点上限和下限,包括极限参数(LIMIT-DATA A/LIMIT-DATA

B)

● 当前显示页面格式

4.2.2 优盘管理性能

如上所述,TH2830 标配了 USB HOST 接口,可以用外部优盘作为存储媒体,从而突破仪器内部 40 组设定文件的存储限制,还可以把这些文件复制到带 USB 接口的 IBM PC 或与之兼容的台式机、笔记本电脑,从而达到无限扩展。

TH2830 支持如下性能的 USB 海量存储设备(优盘):

- 符合 USB 1.0/1.1 标准
- 容量为: 32MB/256MB/2GB/4GB
- 文件格式: FAT16, FAT32 (用 Microsoft Windows 操作系统格式化)

4.2.3 文件管理操作步骤:

- 查找已存在的文件
- 1. 用[▲]、[▼]按键,可逐个翻看,在页面尾部会自动换页。
- 2. 用[◀]、[▶]按键,可逐页翻看。
- 3. 按软键文件查找,输入文件字符,再按键[ENTER],可直接查找文件名。
- 4. 输入数字,再按键[ENTER],可直接跳页翻看。

■ 按照下列步骤将控制设定参数保存到文件。

- 1. 选择并设定所需页面的所有控制设定参数。
- 2. 按下软键文件管理,屏幕将显示文件列表和下列软键。
 - 加载
 - 保存
 - ●删除
 - 复制到 E:

- 查找
- ◆外部文件
- 3. 在文件列表中将光标移至要保存的文件位置。或直接输入文件序号。
- 4. 按下保存软键后,软键菜单变为下列选项:
 - 是
 - 否
- 5. 按软键否将取消当前保存操作并返回步骤 2。
- 6. 按软键是,屏幕将弹出文件名称输入操作界面:

- 7. 移动光标,选择要输入的字符,按**输入字符**就把光标位置的字符添加的 文件名输入位置,按**确认**就保存当前文件名的文件。按**取消**软键就推出 文件输入界面。
- 按照下列步骤将控制设定参数从文件加载。
- 1. 按下软键**文件管理**,屏幕将显示文件列表和下列软键。
 - 加载
 - 保存
 - ●删除
 - 复制到 E:
 - 查找
 - 外部文件
- 2. 在文件列表中将光标移至要加载的文件位置。或直接输入文件序号。
- 3. 按下加载软键,屏幕将显示下列软键。
 - 是
 - 否
- 4. 按软键否将取消当前加载操作并返回步骤 1。

- 5. 按软键**是**,将当前所选文件被加载。**TH2830** 同时返回元件测量显示页面。
- 按照下列步骤复制文件到优盘。
- 1. 假设现在要复制内部文件序号 2 到外部存储优盘。
- 2. 按下软键文件管理, 屏幕将显示文件列表和下列软键。
 - 加载
 - 保存
 - 删除
 - 复制到 E:
 - 查找
 - 外部文件
- 3. 移动光标到要复制的文件,按[ENTER]键选中。(可选多个文件)
- 4. 按键复制到 E:,将文件复制到仪器外部存储优盘。
- 5. 在复制文件时,具备进度条提示当前复制的进度。进度条消失,文件复 制操作完成。

注:请确保您的优盘符合本节所述标准,并且没有写保护。

第5章 执行 LCR 测量操作及一些示例

5.1 "清零"校正操作

执行清零操作(为了防止杂散阻抗影响测量精度,须进行开路/短路校正),用户可以使用以下两种清零方式的任意一种。

5.1.1 全频清零

- 1. 按菜单键[SETUP],再按软键 用户校正, 仪器会显示为<用户校正>页面。
- 2. 移动光标到**开路**区域。 开 , 关 和 开路全频清零 会显示在软键区域。
- 3. 保持测试夹具开路状态,按键开路全频清零执行开路校正,一直等到状态信息提示区域显示开路校正完成。
- 4. 按键 开 , 打开仪器的开路校正功能。
- 5. 把短路片(TH26010)插入测试夹具。
- 6. 移动光标到**短路**区域。 开 , 关 和 短路全频清零 会显示在软键区域。
- 按键短路全频清零执行短路校正,一直等到状态信息提示区域显示短路 校正完成。
- 8. 按键 开 , 打开仪器的短路校正功能。
- 9. 移动光标到负载区域。 开 , 关 会显示在软键区域。
- 10. 按键 关 , 关闭仪器的负载校正功能。
- 11. 移动光标到**频率**区域。 开 , 关 , 开路单频清零, 短路单频清零和负载校正会显示在软键区域。
- 12. 按键 关 , 关闭频率的点频清零功能。

5.1.2 点频清零

(对于使用单个频率测试的情况比较好)

假设用户现在使用的测试频率为 5kHz。

- 1. 按菜单键[SETUP],再按软键 用户校正,仪器会显示为<用户校正>页面。
- 2. 移动光标到开路区域。 开 , 关 和开路全频清零会显示在软键区域。
- 3. 按键 开 , 打开仪器的开路校正功能。
- 4. 移动光标到**短路**区域。 开 , 关 和 短路全频清零 会显示在软键区域。
- 5. 按键 开 , 打开仪器的短路校正功能
- 6. 移动光标到负载区域。 开 , 关 会显示在软键区域。
- 7. 按键 关 , 关闭仪器的负载校正功能。
- 8. 移动光标到校正点区域。可以选择校正点。
- 9. 移动光标到**频率**区域。 开 , 关 , 开路单频清零, 短路单频清零和负载校正会显示在软键区域。
- 10. 按键 开 , 打开**频率**的点频清零功能。
- 11. 按键[5], 5 会显示在屏幕中的光标区域,并且软件区域会显示可用的单

- 位(Hz,kHz,和 MHz)。按键 kHz。则**频率**区域会改为 5.0000kHz(与测试频率相同)。
- 12. 保持测试夹具开路状态, 按软键开路单频清零执行开路校正。
- 13. 把短路片(TH26010)插入测试夹具。
- 14. 按软键短路单频清零执行短路校正。

5.2 被测元件的正确连接

仪器具有 HCUR(电流采样高端 Hc)、LCUR(电流采样低端 Lc)、HPOT(电压采样高端 Hp)、LPOT(电压采样低端 Lp)和对应于每个测试端的屏蔽端共四对测试端。

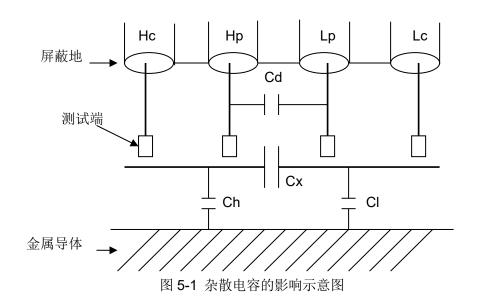
屏蔽端的使用目的在于减小对地杂散电容的影响和降低电磁干扰。测量时 Hc、Hp 和 Lc、Lp 应在被测元件引线上连接,形成完整的四端测量,以减小引线及连接点对测试结果的影响(尤其是损耗测量)。特别是对低阻抗元件进行检测时,应将电压采样端 Hp、Lp 连接至元件的引线端,以防止引线电阻加入被测阻抗,其连接的原则为 Hp、Lp 所检测的电压应为被测件上实际存在的电压。

换言之,最好 Hc、Hp 和 Lp、Lc 不要连接后再与被测元件引线端相连接, 否则将增加测试误差。

如果接触点及引线电阻 Rlead 远小于被测阻抗(例如: Rlead<Zx/1000,要求误差影响小于 0.1%)时则 Hc、Hp 及 Lp、Lc 可连接在一起后再连至被测元件两端(两端测量)。

在进行一些精度要求较高的测量时,使用测量夹具比使用测试导线(仪器附配的开尔文夹具)要好的多。开尔文测试线在 10kHz 频率下测试时,可以有较好的测量结果,但超过 10kHz 频率时,开尔文测试线很难满足测试要求。因为在高频时,导线之间间隙的变化直接改变了测试端杂散电容和电感,而测试导线总是难以加以固定的。

因此,在较高频率进行测量时应尽可能使用测试夹具,如果由于条件所限无 法使用测试夹具,则仪器清零时测试线的状态应尽可能与测试时保持一致。


无论使用仪器提供的测试夹具或开尔文测试电缆或者用户自制夹具,应满足以下几方面的要求。

- 1. 分布阻抗必须降至最小,尤其是测量高阻抗元件时。
- 2. 接触电阻必须降至最小。
- 3. 触点间必须可以短路和开路。短路和开路清"0"可以轻易地减小测试夹具分布阻抗对测量的影响。对于开路清"0",测试端应该与被测件连接时一样,以相同的距离隔开。对于短路清"0",低阻抗的短路板应连接在测试端之间,或使 Hc、Lc 直接连接,Hp、Lp 直接连接,而后将两者连接一起。

注: 当被测元件为有极性器件时,于测试前须注意"高电位端"请接于前面板标为"+"或 Hc、Hp 的端子,而"低电位端"请接于前面板标为"-"或 Lc、Lp 的端子。

警告: 测量有极性元件时请先放电以免损害仪器。

5.3 消除杂散阻抗的影响

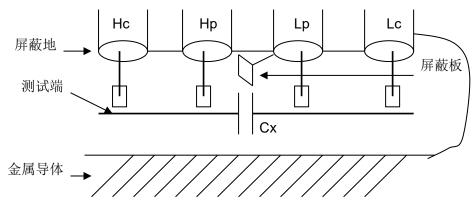


图 5-2 消除杂散电容影响方法示意图

当被测件为高阻抗时(如小电容),杂散电容的影响不能忽略,图 5-1 表示使用四端测量被测件的例子,图中,Cd 与 Cx 并联,当有导体板位于被测件之下时,电容 Ch 与 Cl 串联后也和 Cx 并联,这样会对测量结果产生误差。将一块接地导体放在测试高端和低端之间,Cd 可以降至最小,同时若把接地端子接至下面导体板,Ch、Cl 的影响将会消除。

5.4 测试电感快速操作实例

测试条件如下:

■ 功能: Ls-Q

■ 频率: 5kHz

■ 电平: 1.5Vrms

■ 内阻: 100Ω

步骤如下:

- 1. 开机,参见"面板说明及入门操作"一章的"开机"小节。
- 2. 基本参数设定。
- 按菜单键[DISP], 使 TH2830 显示到<元件测量显示>页面。
- 使用编码器旋钮,移动光标到**功能**区域,当前此区域显示为 Cp-D,此时 Cp-...▶,Cs-...▶,Lp-...▶,更多▶会显示在屏幕右方的软键区域。
 - 按键 Ls-... ▶。Ls-D, Ls-Q, Ls-Rs, Ls-Rd 会显示。
 - 按键 Ls-Q 选择 Ls-Q 测试功能。
 - 移动光标到**频率**区域。当前此区域显示为 1.0000kHz。
- 按键[5], 5 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(Hz, kHz, 和 MHz)。按键 kHz。则**频率**区域会改为 5.000kHz。
 - 移动光标到**电平**区域。当前此区域显示为 1.000V。
- 按键[1][.][5]。1.5 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(mV, V, uA, mA 和 A),按 V。则**电平**区域会改为 1.5V。
 - 按菜单键[SETUP],到<测量设置>页面。
 - 移动光标到**内阻**区域,此时 100Ω,30Ω 会显示在屏幕右方的软键区域。
 - 按键 100Ω 选择 100Ω 信号源内阻。
 - 3. 把测试夹具(TH26005)安装到 TH2830的测试端。
 - 4. 执行清零操作(为了防止杂散阻抗影响测量精度,须进行开路/短路校正),(参见本章 5.1.2"点频清零")。
 - 5. 把被测电感插到测试夹具上。
 - 6. 执行测量操作

按菜单键[DISP],使 TH2830 显示到<元件测量显示>页面。仪器会连续测试并把测试结果用大字显示在页面中央。

- 7. 如果发现测试结果明显不对,请:
- 检查被测电感是否与测试夹具可靠相连。
- 检查测试夹具是否与仪器的测试端可靠相连。
- 重新进行可靠的开路/短路校正。

注意: 当用户使用的是扫频开路/短路校正时,必须把点频校正功能选为 OFF, 参考本章之"清零校正操作"。

5.5 多频列表扫描测试电容快速操作实例

测试条件如下:

- 功能: Cp-D
- 电平: 1Vrms
- 其他参数如下表:

频率	比较参数	下限	上限
1kHz	Cp(容量)	325.0nF	333.0nF
10kHz	D (损耗)	0.0001	0.0003
100kHz	D (损耗)	0.0060	0.0100

- 讯响: HIGH LONG (长高声)
- 报警方式: OUT (超差时)

步骤如下:

- 1. 开机,参见"面板说明及入门操作"一章的"开机"小节。
- 2. 基本参数设定。
- 按键[DISP], 使 TH2830 显示到<元件测量显示>页面。
- 当前**功能**区域显示为 Cp-D,**电平**区域显示为 1.000 V。
- 按键[SETUP],使仪器显示到<测量设置>页面,此时测量设置,用户校正,极限设置,列表设置和文件管理会显示在软键区域。
 - 按键列表设置,使 TH2830 显示到<列表扫描设置>页面。
 - 移动光标到**扫描参数**区域。当前此区域显示为频率[Hz]。
 - 按旋纽键,移动光标到扫描点1的参数区域,当前此区域显示为---。
- 按键[1], 1 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(Hz,kHz,和MHz)。按键kHz。则此区域会改为1.0000k。
- 按键[▶],移动光标到扫描点 1 的 LMT 区域,当前此区域显示为---。此时限定数据 A,限定数据 B 和关会显示在软键区域。
- 按键限定数据 A,选择比较主参数 Cp 功能,此时此区域会显示为 A,并且光标自动移到扫描点 1 的下限区域。
- 按键[3][2][5],325 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(p, n, μ , m, k)。按键 n。则此区域会改为 325.000n。并且光标自动移到扫描点 1 的上限区域。
- 按键[3][3][3],333 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(p, n, μ , m, k)。按键 n。则此区域会改为 333.000n。并且光标自动移到扫描点 2 的参数区域。
- 按键[10], 10 会显示在屏幕中的光标区域,并且软键区域会显示可用的单位(Hz,kHz,和MHz)。按键kHz。则此区域会改为10.0000k。
- 按键[▶],移动光标到扫描点 2 的 LMT 区域,当前此区域显示为---。此时限定数据 A,限定数据 B 和关会显示在软键区域。
- 按键限定数据 B,选择比较副参数 D 功能,此时此区域会显示为 B,并且光标自动移到扫描点 2 的下限区域。
- 按键[0][.][0][0][0][1], 0.0001 会显示在屏幕中的光标区域, 并且软键区域会显示可用的单位 (p, n, μ , m, k, M, *1), 按下*1。则此区域会改为 100.000 μ 。 并且光标自动移到扫描点 2 的上限区域。

- 按键[0][.][0][0][0][3], 0.0003 会显示在屏幕中的光标区域, 并且软键区域会显示可用的单位 (p, n, μ , m, k, M, *1), 按下*1。则此区域会改为 300.000 μ 。并且光标自动移到扫描点 3 的参数区域。
 - 按上述 I—p 步骤依次输入第3个扫描点的100kHz, B, 0.0060和0.0100。
 - 3. 报警设置
 - 按键[SYSTEM],使 TH2830 显示到<系统设置>页面。
 - 移动光标到**不良讯响**区域。当前此区域显示为 **HIGH LONG**。
 - 4. 把测试夹具(TH26005)安装到TH2830的测试端。
 - 5. 执行清零操作(为了防止杂散阻抗影响测量精度,须进行开路/短路校正),(参见本章 5.1.1"扫频清零")。
 - 6. 把被测电容插到测试夹具上。
 - 7. 执行测量操作

按键[DISP],再按键列表扫描,使 TH2830 显示到<列表扫描显示>页面。仪器会连续扫描测试并把测试和比较结果显示在页面上,并且当比较结果为 H(上超)或 L(下超)时发出讯响报警。

- 8. 如果发现测试结果明显不对,请:
- 检查被测器件是否与测试夹具可靠相连。
- 检查测试夹具是否与仪器的测试端可靠相连。
- 重新进行可靠的开路/短路校正。

注意: 当用户使用的是扫频开路/短路校正时,必须把点频校正功能选为 OFF, 参考本章之"清零校正操作"。

5.6 比较器设置实例

TH2830 提供了比较完备的比较器功能,可方便生产线元件测量与判别及进出货检验,标准配置的 HANDLER 接口使之适合于自动分选测量系统。

比较器的概念及具体操作在前章有详尽的叙述,这里举两个设置例子。

5.6.1 电容器分选

电容型号: 0805CG271

基本要求:容量分两档,J档和K档,容量合格损耗不合格时另外归档。

测量参数: 频率 100kHz, 电平 1Vrms, 慢速, 不合格时报警, 外部触发。

分选参数: J 档-4.6% \sim +4.8%, K 档-9% \sim +10%, 损耗 $tg\delta$ < 0.15%

此例需设置参数如下表:

主参数(FUN1)	Ср
副参数(FUN2)	D
频率(FRQ)	100kHz
电平 (LEV)	1V
速度(SPEED)	SLOW(慢速)

ON
%TOL(百分比公差方式)
270pF
-4.6%
4.8%
-9%
10%
0.0000
0.0015
EXT (外部)
不良讯响(高长)

说明 1: 因为是小电容,其 100kHz 阻抗大于 1k Ω ,因此我们选择并联等效方式;

说明 2: 容量任一档合档但损耗不合格时另档处理,因此打开附属档,将之 归为 AUX 档。如果关闭 AUX,则损耗不合格时即整体判别为不合格。

说明 3:由于给定上下限是基于 270pF 标称值的百分比偏差,因此主参数选择%TOL 百分比模式。

步骤如下:

- 1. 在元件测量显示页 DISP, 选择 Cp-D,设置频率、电平、速度等
- 2. 按 SETUP 菜单键进入测量设置页面(Meas Setup),更改触发方式为 EXT(外部触发)
- 3. 按 SETUP 极限设置进入极限列表设置页(Limit Table),设置标称值,主参数公差模式,上/下限参数,比较器开关,附属档开关:
- 4. 再按 SETUP 菜单键进入系统设置页面(System Config), 找到不良讯响项,设置为 高长
- 5. 设置完成后按 DISP 返回元件测量显示页(DISP)

5.6.2 负载校准操作实例

假设用户现在使用的测试条件如下:

- 频率: 100kHz。
- Cp 标准值: 11nF
- D标准值: 0.0005

步骤如下:

- 1. 按键[SETUP],测量设置,用户校正,极限设置,列表设置,文件管理和工具会显示在软键区域。
- 2. 按软键 用户校正。仪器会显示为<用户校正>页面。
- 3. 移动光标到**开路**区域。 开 , 关 和 开路全频清零 会显示在软键区域。
- 4. 按键 开 , 打开仪器的开路校正功能。
- 5. 移动光标到短路区域。 开 , 关 和 短路全频清零 会显示在软键区

域。

- 6. 按键 开 , 打开仪器的短路校正功能
- 7. 移动光标到负载区域。 开 , 关 会显示在软键区域。
- 8. 按键 开 , 打开仪器的负载校正功能。
- 9. 移动光标到**功能**区域,当前此区域显示为 Cp-D,此时 Cp-...▶, Cs-...▶, Lp-...▶, Ls-...▶, Z-...▶, 更多 ◀ 会显示在屏幕右方的软键区域。
- 10. 按键 Cp-D 选择 Cp-D 参数。
- 11. 移动光标到**频率**区域。 开 , 关 , 开路单频清零, 短路单频清零和负载校正会显示在软键区域。
- 12. 按键 开 ,打开频率的点频校正功能。
- **13.** 按键[1][0][0], **100** 会显示在屏幕中的光标区域,并且软件区域会显示可用的单位(**Hz**, **kHz**, 和 **MHz**)。按键 **kHz**。则**频率**区域会改为**100.000kHz**(与测试频率相同)。
- 14. 移动光标到频率的**参考 A**:区域。按键[1][1], 11 会显示在屏幕中的光标 区域,并且软件区域会显示可用的单位(p, n, μ, m, k)。按键 n。则此区域会改为 11.0000nF。
- 15. 移动光标到频率的**参考 B:**区域。按键[0][.][0][0][0][5], 0.0005 会显示在 屏幕中的光标区域,并且软件区域会显示可用的单位(p, n, μ, m, k)。按键[ENTER]。则此区域会改为 0.00050。
- **16**. 移动光标到**频率**区域。 开 , 关 ,开路单频清零,短路单频清零和负载校正会显示在软键区域。
- **17**. 保持测试夹具开路状态,使手或其他干扰源远离测试夹具。按软键开路单频清零执行开路校正。
- 18. 把短路片(TH26010)插入测试夹具,使短路片与测试夹具的簧片可靠接触。
- 19. 按软键短路单频清零执行短路校正。
- **20**. 把用户的标准电容插入测试夹具,使标准电容的引脚与测试夹具的簧片可靠接触。
- 21. 按软键负载校正执行负载校正。

注意事项:

- **1.** 由于仪器的软件版本可能不一致,会使仪器显示的软键信息和状态信息 与本书不一致,但应该不影响用户理解。
- 2. 负载校正只对同一规格的器件有效,换规格后必须重做负载校正。

第6章 性能与测试

6.1 测量功能

6.1.1 测量参数及符号

C: 电容

L: 电感

R: 电阻

Z: 阻抗

Y: 导纳

X: 电抗

B: 电纳

G: 电导

D: 损耗 θ : 相位角 Q: 品质因数

DCR: 直流电阻

测量组合(十一种测量参数及以下述方式组合):

	主参数	Z, Y	L, C	R	G
Ī	副参数	heta(deg 角度), $ heta$ (rad 弧	$D,\ Q,\ R_S,\ R_P,\ G,$	Χ	В
		度)	Rd		

DCR 无测量组合。

数学运算:测量所得值对一可编程标称值的绝对值偏差 ΔABS 和百分比偏差 Δ%运算。

6.1.2 等效方式

串联、并联

6.1.3 量程

自动、手动(保持、增、减)

6.1.4 触发

内部、外部、手动

- 内部:连续不断的对被测件进行测量并将结果输出显示
- 手动:按动面板"TRIGGER"键仪器进行一次测量并将结果输出显示,平 时处于等待状态。
- 外部: 仪器 HANDLER 接口从外部接收到"启动"信号后,进行一次测量 并输出测量结果,而后再次进入等待状态。

6.1.5 触发延时

延时时间:测量触发到开始测量的时间。0~60 秒以 1ms 步进可编程

6.1.6 测试端连接方式

采用四端测量方式。

TH2830 系列仪器使用说明书

Hcur: 电流采样高端 Lcur: 电流采样低端

Hpot: 电压采样高端 Lpot: 电压采样低端

6.1.7 测量速度

(频率>=10kHz 时)

■ 快速:约 75 次/秒(13ms/次)

■ 中速:约 12 次/秒(83ms/次)

■ 慢速:约6次/秒(167ms/次)

中速和快速在频率小于 10kHz 时测量速度会降低。

6.1.8 平均

1~255 可编程。

6.1.9 显示位数

6位,最大显示数字 999999

6.2 测试信号

6.2.1 测试信号频率

测试信号为正弦波,频率准确度: 0.01%

测试频率范围:

50Hz~100kHz (TH2830)

20Hz~200kHz (TH2832)

最小分辨率: 0.01Hz

6.2.2 信号模式

■ 正常:在测量显示页面上设置测试电压,测量时测量端的电压根据被测件阻抗可能比设置电压小。

■ 恒电平:内部电平自动调节使被测件上的电压与设定电压一致。

6.2.3 测试信号电平

	模式	范围(100 内阻)	准确度	步进	
电压	正常	$10 \text{mV}_{\text{RMS}}$ — 2V_{RMS}	±(10%×设定值+2mV)	10mV	
电压	恒压	$10 \text{mV}_{\text{RMS}}$ — 1V_{RMS}	± (6%×设定值+2mV)	IUIIIV	
			±(10%×设定值		
电流	正常	100µA _{RMS} —20mA _{RMS}	+10µA _{RMS})	100µA	
电机	恒流	100µA _{RMS} —10mA _{RMS}	± (6%×设定值	ΙσομΑ	
			+10µA _{RMS})		

6.2.4 输出阻抗

30Ω、100Ω±1%可选

6.2.5 测试信号电平监视器

模式	范围	准确度
电压	5mV _{RMS} —2V _{RMS}	± (3%×读数+0.5mV)
	$0.01 \text{mV}_{\text{RMS}}$ — 5mV_{RMS}	±(12%×读数+0.1mV)
电流	50µA _{RMS} —20mA _{RMS}	±(3%×读数+5µA)
电 <i>机</i> 	0.001µA _{RMS} —50µA _{RMS}	±(12%×读数+1µA)

6.2.6 测量显示最大范围

参数	测量显示范围	
L	0.00001 μ H \sim 99.999 k H	
С	0.00001pF \sim 9.99999F	
$Z_{x}R_{x}X_{x}DCR$	0.00001Ω~ 99.9999MΩ	
Y、B、G	$0.00001 \mu s \sim 99.9999 S$	
D	0.00001 — 9.99999	
Q	0.00001 — 99999.9	
θ	Deg -179.999°∼179.999°	
0	Rad -3.14159 \sim 3.14159	

6.2.7 直流偏置电压源

■ 100Ω 内阻时:

- 0V—±5V最小分辨率: 1mV,准确度: 1%*设定电压+5mV
- 0mA—±50mA 最小分辨率: 10µA

■ 30Ω 内阻时:

- 0V—±1.5V 最小分辨率: 1mV,准确度: 1%*设定电压+5mV
- 0mA—± 50mA 最小分辨率: 10µA

6.3 测量准确度

测量准确度包含了测量稳定性、温度系数、线形度、测量重复性和校准内插误差。

对仪器测量准确度进行检查时必须在下述条件下进行:

- 开机预热时间: ≥ 30 分钟
- 测试电缆长度: 0m, 1m
- 预热后正确地进行开路、短路清"0"
- 直流偏置处于"OFF"位置

■ 仪器量程工作在"AUTO",以选择正确的测量范围

6.3.1 | Z | 、 | Y | 、 L、 C、 R、 X、 G、 B 的准确度

| Z | , | Y | , L, C, R, X, G, B 的准确度 Ae 由下式表示:

Ae = \pm [A+ (Ka+Kb+Kc) ×100+ Kd +Kf]×Ke [%]

A: 基本测量准确度(见图 A)

Ka: 阻抗比例因子(见表 A)

Kb: 阻抗比例因子(见表 A)

Kc: 校准内插因子(见表B)

Kd: 电缆长度因子(见表 D)

Ke: 温度因子(见表E)

Kf: 扫描治具修正因子(未加: Kf = 0、加: Kf = 0.2)

L, C, X, B 准确度使用条件: Dx (D 测量值) ≤0.1

R, G 准确度使用条件: Qx (Q 测量值) ≤0.1

当 Dx≥0.1,对 L,C,X,B 准确度因子 Ae 应乘以 $\sqrt{1+D_x^2}$

当 Qx≥0.1,对 R,G 准确度因子 Ae 应乘以 $\sqrt{1+Q_x^2}$

G 的准确度只能在 G-B 测量组合时使用

6.3.2 D准确度

D准确度 De 由下式给定:

De =
$$\pm \frac{A_e}{100}$$

上式仅当 Dx≤0.1 使用。

当 Dx>0.1, De 应乘以(1+Dx)

6.3.3 Q准确度

Q准确度由下式给定:

$$Qe = \pm \frac{Q_x^2 \times D_e}{1 \mp Q_x \times D_e}$$

这里, Qx 是被测 Q 的值。

De 是 D 的准确度

上式使用条件 Qx×De<1

6.3.4 θ准确度

θ准确度由下式给定:

$$\theta e = \frac{180}{\pi} \times \frac{A_e}{100} \quad [deg]$$

6.3.5 G 准确度

当 Dx (被测 D 值) ≤0.1 时

G准确度由下式给定:

Ge =
$$Bx+De$$
 [S]

$$Bx = 2\pi fCx = \frac{1}{2\pi fL_x}$$

这里, Bx 是被测 B 的值[S]。

Cx 是被测 C 的值[F]。

Lx 是被测 L 的值[H]。

De 是 D 的准确度。

F 是测试频率。

上述 G准确度仅用于 Cp-G 和 Lp-G 测量组合中。

6.3.6 Rp 准确度

当 Dx (被测 D 值) ≤0.1 时

Rp 准确度由下式给定:

$$\mathsf{Rp} = \pm \frac{R_{px} \times D_e}{D_x \mp D_e} [\Omega]$$

这里, Rpx 是被测 Rp 的值[S]。

Dx 是被测 D 的值[F]。

De 是 D 的准确度。

6.3.7 Rs 准确度

当 Dx (被测 D 值) ≤0.1 时

Rs 准确度由下式给定:

Rse= $Xx \times De[\Omega]$

$$Xx=2\pi f Lx = \frac{1}{2\pi f C_x}$$

这里, Xx 是被测 X 的值[S]。

Cx 是被测 C 的值[F]。

Lx 是被测 L 的值[H]。

De 是 D 的准确度

F是测试频率

6.3.8 准确度因子

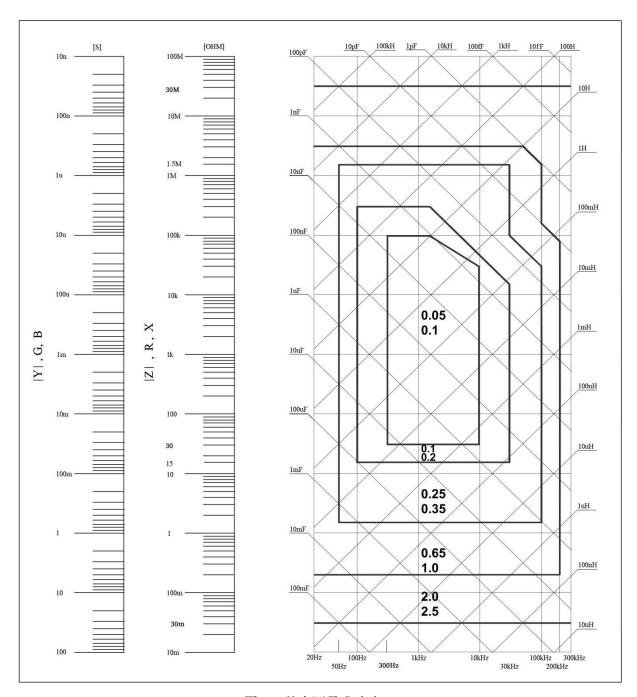


图 A 基本测量准确度 A

图 A 中,在边界线上,选择较小的值

图 A 中, 基本准确度 A 值选择方法如下:

- 0.05----当 0.4Vrms≤Vs≤1.2Vrms,测量速度为中速、慢速的 A 值。
- 0.1----当 0.4Vrms≤Vs≤1.2Vrms,测量速度为快速的 A 值。
- 当 Vs<0.4Vrms 或 Vs>1.2Vrms 时的 A 值计算方法为:根据当前测量速度 选择的 A,根据当前测试信号电压选择准确度修正系数 Ar 图 B),A 乘以 Ar 得到 当前基本测量准确度 A。这里,Vs 为测试信号电压。

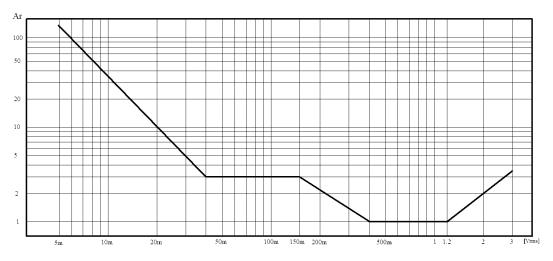


图 B 基本准确度修正曲线

表 A 阻抗比例因子 Ka、Kb

速度	频率	Ka	K _b
	f _m <100Hz	$(\frac{1\times10^{-3}}{ Z_m })(1+\frac{200}{V_s})(1+\sqrt{\frac{100}{f_m}})$	$ Z_m (1\times10^{-9})(1+\frac{70}{V_s})(1+\sqrt{\frac{100}{f_m}})$
中速慢速	100Hz≤fm ≤100kHz	$\left(\frac{1\times10^{-3}}{ Z_m }\right)(1+\frac{200}{V_s})$	$ Z_m (1\times10^{-9})(1+\frac{70}{V_s})$
	100kHz <fm ≤200kHz</fm 	$\left(\frac{1\times10^{-3}}{ Z_m }\right)(2+\frac{200}{V_s})$	$ Z_m (3\times10^{-9})(1+\frac{70}{V_s})$
	f _m <100Hz	$\left(\frac{2.5\times10^{-3}}{ Z_m }\right)\left(1+\frac{400}{V_s}\right)\left(1+\sqrt{\frac{100}{f_m}}\right)$	$ Z_m (2\times10^{-9})(1+\frac{100}{V_s})(1+\sqrt{\frac{100}{f_m}})$
快速	100Hz≤fm ≤100kHz	$\left(\frac{2.5 \times 10^{-3}}{ Z_m }\right) \left(1 + \frac{400}{V_s}\right)$	$ Z_m (2\times10^{-9})(1+\frac{100}{V_s})$
	100kHz <fm ≤200kHz</fm 	$(\frac{2.5 \times 10^{-3}}{ Z_m })(2 + \frac{400}{V_s})$	$ Z_m (6\times10^{-9})(1+\frac{100}{V_s})$

fm: 测试频率[Hz]

被测件阻抗 $[\Omega]$

测试信号电压[mVrms]

当阻抗小于 500Ω 时使用 Ka,Kb 无效。

当阻抗大于 500Ω 时使用 Kb,Ka 无效。

表 B 校准内插因子 Kc

直接校准频率	0
其它频率	0.0003

表 C 直接校准频率(TH2832)

			20	25	30	40	50	60	80	[Hz]
100	120	150	200	250	300	400	500	600	800	[Hz]
1	1.2	1.5	2	2.5	3	4	5	6	8	[kHz]
10	12	15	20	25	30	40	50	60	80	[kHz]
100	120	150	200							[kHz]

(TH2830 的范围为 50Hz-100kHz)

表 D 电缆长度因子 Kd

测试信号电平	电缆长度					
例以后与电子	0m	1m	2m			
≤1.5V _{rms}	0	2.5×10 ⁻⁴	5×10 ⁻⁴ (1+50×f _m)			
	U	$(1+50\times f_m)$	5×10 * (1+50×1m)			
>1.5V _{rms}	0	2.5×10 ⁻³	5×10 ⁻³ (1+50×f _m)			
	U	$(1+16\times f_m)$	3^10°(1+30×1m)			
fm: 测试频率[M	Hz]					

使用扫描治具时, Kd 取 2m 时的修正因子

表 E 温度因子 Ke

温度 (℃)	5)	8	3	1	8	2	28	38
K _e	6	4		2		1		2	4

6.3.9 直流电阻 DCR 准确度

 $A(1+R_x/5M\Omega+16m\Omega/R_x)[\%] \pm 0.2m\Omega$

中速、慢速时,A=0.1

快速时, A=0.25

这里,Rx为被测电阻。

6.4 性能测试

6.4.1 工作条件

各项试验应在第 1 章参比工作条件下进行。本测试只列入仪器主要部分指标的测试。其它部分未列入如变压器参数的测试等,用户可根据本手册所列指标在规定条件下进行测试。性能测试应在第 1 章规定预热条件下工作。

6.4.2 试验仪器和设备见

序号	仪器设备名称	技术要求	
1	标准电容器	100pF	0.02%
'	你住电台台	1000pF	损耗 D 已知

		10000pF	
		10nF	
		0.1uF	
		1uF	
		10Ω	
	交流	100Ω	
2	交流 标准电阻器	1kΩ	0.02%
	7071年·巴拉奇	10kΩ	
		100kΩ	
		0.1Ω	
	直流标准电阻器	1Ω	
		10Ω	
3		100Ω	0.02%
		1kΩ	
		10kΩ	
		100kΩ	
	标准电感器	100µH	
4		1mH	0.02%
4		10mH	0.0270
		100mH	
5	频率计	(0~1000) MHz	
6	数字万用表	0.5%	
7	绝缘电阻表	500V 10 级	
8	耐压泄漏测试仪		0.25kW
			(0∼500) V

6.4.3 功能检查

仪器各功能键、显示器、端子等应能正常工作,各项功能正确无误。

6.4.4 测试信号电平

将数字万用表置于 AC 电压量程,其中一根测试棒连接到测量仪的 H_{CUR} 端,另一根测试棒连接到接地端。改变电平为:10mV、20mV、100mV、200mV、1V、2V,读数应符合本章关于测试信号电平要求。

6.4.5 频率

将频率计接地端与仪器的接地端相连。频率计测试端与电容仪测试端 Hcur 端相连。改变频率为: 20Hz、100Hz、1kHz、10kHz、100kHz(TH2830 为 100kHz) 频率计的读数应符合本章关于测试信号频率的要求。

6.4.6 测量准确度

测量仪测量参数较多,基本测量参数为R、L、C、D,其余参数均可由上述参数到处,因此准确度测量主要对R、L、C、D进行测量。

6.4.7 电容量 C、损耗 D 准确度

测试条件:

- 功能: Cp-D
- 测试频率: 100Hz 1kHz 10kHz 100kHz 分别测试
- 电平: 1V
- 量程: AUTO
- 偏置: 0V
- 速度:慢

测试前应进行短路和开路清零。接入标准电容器 100pF、1000pF、10nF、0.1uF、1uF,改变频率,仪器读数与标准值之间的误差电容量 C 应在本章关于 C 准确度规定的允许误差范围内,损耗 D 应在本章关于 D 准确度规定的允许误差范围内。

6.4.8 电感量 L 准确度

测试条件:

- 功能: Ls-Q
- 测试频率: 100Hz 1kHz 分别测试
- 电平: 1V
- 量程: AUTO
- 偏置: 0V
- 速度:慢

测试前应进行短路和开路清零。接入标准电感器 100μH、1mH、10mH、100mH,改变频率,仪器读数与标准值之间的误差应在本章关于 L 准确度规定的允许误差范围内。

6.4.9 阻抗 Z 准确度

测试条件:

- 功能: **Z-θ**
- 测试频率: 100Hz 1kHz 10kHz 100kHz 分别测试
- 电平: 1V
- 量程: AUTO
- 偏置: 0V
- 速度:慢

测试前应进行短路和开路清零。接入交流标准电阻器 10Ω 、 100Ω 、 $1k\Omega$ 、 $10k\Omega$ 、 $100k\Omega$,改变频率,仪器读数与标准值之间的误差应在本章关于|Z|准确度规定的允许误差范围内。

6.4.10 直流电阻 DCR 准确度

测试条件:

- 功能: DCR
- 测试频率: -----
- 电平: -----
- 量程: AUTO
- 偏置: -----
- 速度:慢

测试前应进行短路清零。接入直流标准电阻器 0.1Ω 、 1Ω 、 10Ω 、 100Ω 、 $1k\Omega$ 、 $10k\Omega$ 、 $100k\Omega$,仪器读数与标准值之间的误差应在本章关于 DCR 准确度规定的允许误差范围内。

第7章 命令参考

本手册数据约定:

■ NR1:整数,例如: 123。

■ NR2: 定点数,例如: 12.3。

■ NR3: 浮点数,例如: 12.3E+5。

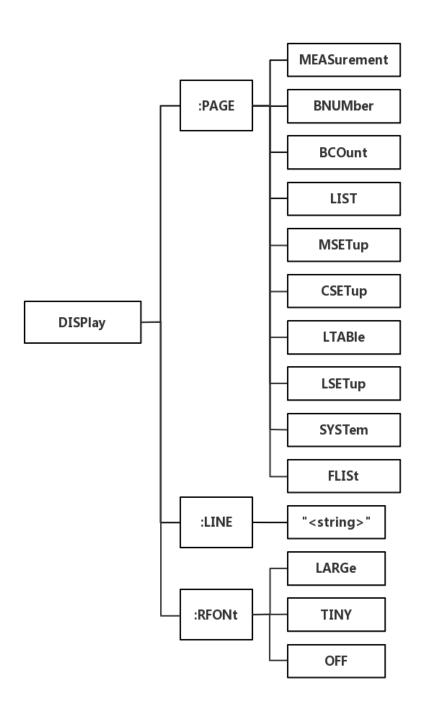
■ NL: 回车符,整数 10。

■ ^END: IEEE-488 总线的 EOI (结束) 信号。

7.1 仪器子系统命令:

•DISPlay •ORESister •TRIGger

●CORRection ●FREQuency ●BIAS


•FUNCtion •FETCh? •Mass MEMory

•CURRent •LIST •ABORT •DCR

7.1.1 DISPlay 子系统命令集

DISPlay 子系统命令集主要用于设定仪器的显示页面,字符?可以查询当前的页面。

命令树:

7.1.1.1 DISPlay:PAGE

描述: 设定仪器的显示页面,字符?可以查询当前的页面。

命令语法: DISPlay:PAGE <page name>

查询语法: DISPlay:PAGE?

查询返回: <page name><NL^END>

<page name>具体如下:

MEASurement 设定显示页面至: 元件测量显示

BNUMber 设定显示页面至: 档号显示

BCOunt 设定显示页面至:档计数显示

LIST 设定显示页面至:列表扫描显示

MSETup 设定显示页面至:测量设置

CSETup 设定显示页面至:用户校正功能

LTABle 设定显示页面至:极限列表设置

LSETup 设定显示页面至:列表扫描设置

SYSTem 设定显示页面至:系统设置页面

FLISt 设定显示页面至:文件列表

例如:

WrtCmd("DISP:PAGE MEAS");

设定显示页面至: 元件测量显示。

WrtCmd("DISP:PAGE?");

返回 MEAS,表明当前显示页面元件测量显示

7.1.1.2 DISPlay:LINE

描述:用于设定仪器当前的测量主题,可以是最长 16 个字符的子串,字符?可以查询当前的测量主题。这个测量主题字符串可以在保存的时候作为文件名保存。

命令语法: DISPlay:LINE"<string>"

查询语法: DISPlay:LINE?

查询返回: <string><NL^END>

<string>可以是 ASCII 字符串(最长 16 个)

例如:

WrtCmd("DISP:LINE "Resistor meas"");

设定仪器当前的测量主题为 Resistor meas

WrtCmd("DISP:LINE?");

返回 Resistor meas, 表明当前的测量主题为 Resistor meas

7.1.1.3 DISPlay:ResultFONt

描述:用于设定仪器当前的测量结果字体。字符?可以查询当前的测量结果字体。

命令语法: DISPlay:RFONt

查询语法: DISPlay:RFONt?

查询返回: <NL^END>

具体如下:

LARGe: 用大字体显示测量结果,每次约 12ms。

TINY: 用小字体显示测量结果,每次约 5ms。

OFF: 不显示测量结果,但是可以从总线上读取。

例如:

WrtCmd("DISP:RFON LARG");

设定仪器当前的测量结果字体为大字体

WrtCmd("DISP:RFON?");

返回 LARG, 表明当前的测量结果字体为大字体

7.1.2 FREQuency 子系统命令集

描述: 用于设定仪器的测量频率,字符?可以查询当前的测量频率。

命令语法: FREQuency <value> / MIN / MAX

查询语法: FREQuency?

查询返回: <NR3><NL^END>

具体如下:

<value>: 可以是 NR1,NR2,NR3 数据格式加 HZ,KHZ,MHZ 后缀的参数。

注意: HZ(hertz)为后缀单位, KHZ 和 MHZ 即为 kHz(1E3 Hz)和 MHz(1E6 Hz)。

MIN: 设定测量频率为 50Hz (TH2832 为 20Hz)

MAX: 设定测量频率为 100kHz(TH2830 最大为 100kHz, TH2832 为 200 kHz)

例如:

WrtCmd("FREQ 1KHZ");

设定测量频率为 1000Hz

WrtCmd("FREQ?");

返回 1k,表明当前的测量频率为 1kHz

7.1.3 VOLTage 子系统命令集

描述:用于设定仪器的测量电平电压,字符?可以查询当前的测量电平电压。

命令语法: VOLTage <value> / MIN / MAX

查询语法: VOLTage?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 数据格式加 V 后缀的参数。

MIN:设定测量电平电压为 5mV

MAX:设定测量电平电压为 2V

例如:

WrtCmd("VOLT 1V");

设定测量电平电压为 1V

WrtCmd("VOLT?");

返回 1V,表明当前的测量电平电压为 1V

7.1.4 CURRent 子系统命令集

描述: 用于设定仪器的测量电平电流, 字符? 可以查询当前的测量电平电流。

命令语法: CURRent <value> / MIN / MAX

查询语法: CURRent?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式加 mA 后缀的参数。

MIN:设定测量电平电流为50µA

MAX:设定测量电平电流为 20mA

例如:

WrtCmd("CURR 1mA");

设定测量电平电流为 1mA

WrtCmd("CURR?");

返回 1m, 表明当前的测量电平电流为 1mA

7.1.5 AMPLitude 子系统命令集

描述:用于设定仪器的自动电平控制(ALC)开关,字符?可以查询当前的自动电平控制(ALC)开关状态。

命令语法: AMPLitude:ALC ON / OFF / 1 / 0

查询语法: AMPLitude:ALC?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("AMPL:ALC 0");

设定仪器的自动电平控制功能关闭

WrtCmd("AMPL:ALC?");

返回 0, 表明当前的自动电平控制功能关闭

(注: TH2832 有此命令功能, TH2830 无此命令功能)。

7.1.6 Output RESister 子系统命令集

描述:用于设定仪器的输出内阻模式,字符?可以查询当前的输出内阻状态。

命令语法: ORESister 30/100

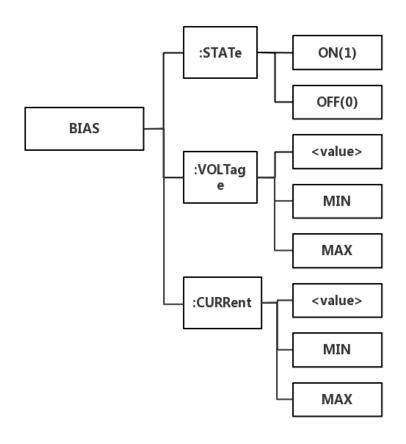
查询语法: ORESister?

查询返回: <NR1><NL^END>

例如:

WrtCmd("ORES 30");

设定仪器的输出内阻为 30Ω


WrtCmd("ORESister?");

返回 30,表明当前仪器的输出内阻为 30Ω

7.1.7 BIAS 子系统命令集

BIAS 子系统命令集主要用于设定仪器的内偏置电压,偏置开关。(仅 TH2832 有)

命令树:

7.1.7.1 BIAS:STATe

描述: 用于设定仪器的偏置开关,字符?可以查询当前的偏置开关。

命令语法: BIAS:STATe ON / OFF / 1 / 0

查询语法: BIAS:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例:

WrtCmd("BIAS:STAT 0");

设定仪器的偏置功能关闭

WrtCmd("BIAS:STAT?");

7.1.7.2 BIAS:VOLTage

描述: 设定仪器的内偏置电压,字符?可以查询当前的偏置电压。

命令语法: BIAS:VOLTage <value> / MIN / MAX

查询语法: BIAS:VOLTage?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式。

MIN:设定测量偏置电压为 0V

MAX:设定测量偏置电压为5V

例:

WrtCmd("BIAS:VOLT MIN");

设定仪器的直流偏置电压为 0V

WrtCmd("BIAS:VOLT?");

返回 1V, 表明当前的测量直流偏置电压为 1V

7.1.7.3 BIAS:CURRent

描述: (仅 GPIB 接口) 用于设定仪器的外偏置电流,字符?可以查询当前的偏置电流。由于外偏置电流用仪器的串行接口控制,所以仅 GPIB 接口支持此命令。

命令语法: BIAS: CURRent <value> / MIN / MAX

查询语法: BIAS: CURRent?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式。

MIN:设定测量偏置电流为 0A

MAX:设定测量偏置电流为 50mA

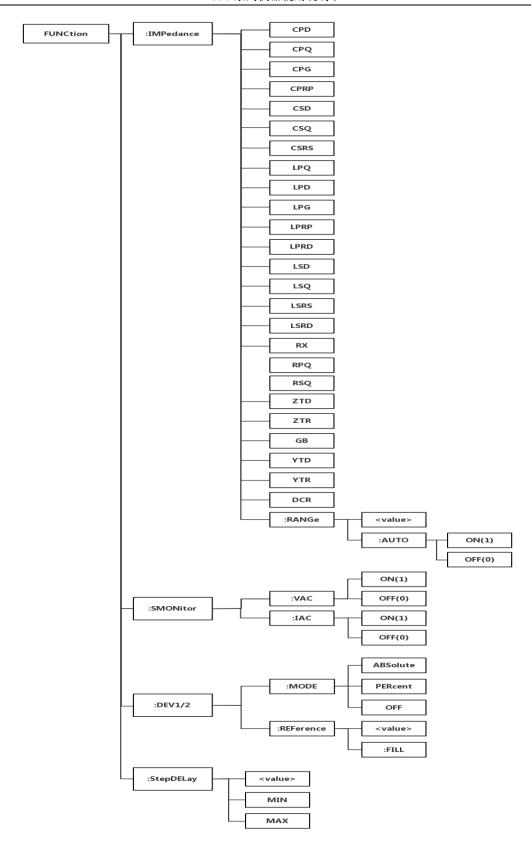
例:

WrtCmd("BIAS:CURR MIN");

设定仪器的直流偏置电流为 OA

WrtCmd("BIAS:CURR?");

返回 0, 表明当前的直流偏置电流为 0A


注: 内阻为 30 Ω 时,偏置电压范围为±1.5V,偏置电流为±100mA,当内阻为

100Ω 时,偏置电压范围为±5V,偏置电流为±50mA

7.1.8 FUNCtion 子系统命令集

描述:用于设定测量"功能",量程,电流电压监视开关,和偏差显示的模式选择、标称设定等。

命令树:

7.1.8.1 FUNCtion:IMPedance

描述:设定仪器的"功能"参数,字符?可以查询当前的"功能"参数。

命令语法: FUNCtion:IMPedance <function>

查询语法: FUNCtion:IMPedance?

查询返回: <function><NL^END>

具体如下:

CPD	设定"功能"为 Cp-D	LPRP	设定"功能"为 Lp-Rp
CPQ	设定"功能"为 Cp-Q	LSD	设定"功能"为 Ls-D
CPG	设定"功能"为 Cp-G	LSQ	设定"功能"为 Ls-Q
CPRP	设定"功能"为 Cp-Rp	LSRS	设定"功能"为 Ls-Rs
CSD	设定"功能"为 Cs-D	RX	设定"功能"为 R-X
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		

CSQ 设定"功能"为 Cs-Q ZTD 设定"功能"为 Z-θ°

CSRS 设定"功能"为 Cs-Rs ZTR 设定"功能"为 Z-θr

LPQ 设定"功能"为 Lp-Q GB 设定"功能"为 G-B

LPD 设定"功能"为 Lp-D YTD 设定"功能"为 Y-θ°

LPG 设定"功能"为 Lp-G YTR 设定"功能"为 Y-θr

LPRD 设定"功能"为 Lp-Rd RPQ 设定"功能"为 Rp-Q

LSRD 设定"功能"为 Ls-Rd RSQ 设定"功能"为 Rs-Q

DCR 设定"功能"为 DCR

例如:

WrtCmd("FUNC:IMP RX");

用于设定仪器的"功能"参数为 R-X。

WrtCmd("FUNC:IMP? ");

返回 R-X,表明当前仪器的"功能"参数为 R-X。

7.1.8.2 FUNCtion:IMPedance:RANGe

描述: 用于设定 LCR 测量的量程,字符?可以查询当前的量程参数。

命令语法: FUNCtion:IMPedance:RANGe <value>

查询语法: FUNCtion:IMPedance:RANGe?

查询返回: <value><NL^END>

参数<value>:

被测量元件的阻抗大小,设置时可以是 NR1,NR2,NR3 数据格式加 OHM,KOHM 后缀的参数。

查询返回时,可以是:

3 10 30 100 300 1000

3000 10000 30000 100000

例如:

WrtCmd("FUNC:IMP:RANG 1KOHM");

设定仪器的量程为 $1k\Omega$ 。

WrtCmd("FUNC:IMP:RANG?");

返回 1,表明当前仪器的量程为 1Ω。

7.1.8.3 FUNCtion:IMPedance:RANGe:AUTO

描述:用于设定仪器的量程自动选择方式,字符?可以查询当前的量程状态。

命令语法: FUNCtion:IMPedance:RANGe:AUTO ON / OFF / 1 / 0

查询语法: FUNCtion:IMPedance:RANGe:AUTO?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价,相当于 FIX

例如:

WrtCmd("FUNC:IMP:RANG:AUTO ON");

设定仪器的量程为自动。

WrtCmd("FUNC:IMP:RANG:AUTO?");

返回1,表明当前的量程状态为自动。

7.1.8.4 FUNCtion:Source MONitor:VAC

描述:设定仪器的电压监视开关,字符?可以查询当前的电压监视开关状态。命令语法:

FUNCtion:SMONitor:VAC ON / OFF / 1 / 0

查询语法: FUNCtion:SMONitor:VAC?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("FUNC:SMON:VAC ON");

用于设定仪器的电压监视开关"开"。

WrtCmd("FUNC:SMON:VAC?");

返回 1, 表明当前电压监视开关"开"。

7.1.8.5 FUNCtion:Source MONitor:IAC

描述:设定仪器的电流监视开关,字符?可以查询当前的电流监视开关状态。

命令语法: FUNCtion:SMONitor:IAC ON / OFF / 1 / 0

查询语法: FUNCtion:SMONitor:IAC?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("FUNC:SMON:IAC ON");

设定仪器的电流监视开关"开"。

WrtCmd("FUNC:SMON:IAC?");

返回 1, 表明当前电流监视开关"开"。

7.1.8.6 FUNCtion: DEV<n>:MODE

描述:用于设定仪器的偏差测量模式,字符?可以查询当前的偏差测量模式状态。

命令语法: FUNCtion:DEV<n>:MODE ABSolute / PERCent / OFF

查询语法: FUNCtion:DEV<n>:MODE?

查询返回: ABS / PERC / OFF<NL^END>

参数:

ABSolute 绝对值偏差显示

PERCent 百分比偏差显示

OFF 实测值直接显示

<n>: 字符 1 表明设定主参数的偏差模式,字符 2 表明设定副参数的偏差模式。

例如:

WrtCmd("FUNC:DEV1:MODE ABS");

设定主参数的偏差模式ABS。

WrtCmd("FUNC:DEV2:MODE?");

返回 ABS, 表明当前副参数的偏差模式为 ABS。

7.1.8.7 FUNCtion:DEV<n>:REFerence

描述:用于设定仪器的偏差标称值,字符?可以查询当前的偏差标称值。

命令语法: FUNCtion:DEV<n>:REFerence <value>

查询语法: FUNCtion:DEV<n>:REFerence?

查询返回: <NR3><NL^END>

参数:

<value>可以是 NR1,NR2,NR3 数据格式。

<n>: 字符 1 表明设定主参数的偏差标称值,字符 2 表明设定副参数的偏差标称值。

例如:

WrtCmd("FUNC:DEV1:REF 10");

设定主参数的偏差标称值 10

WrtCmd("FUNC:DEV2:REF?");

返回 10,表明当前副参数的偏差标称值 10

7.1.8.8 FUNCtion:DEV<n>:REFerence:FILL

描述: 设定仪器的偏差标称值,它控制仪器测量一次,然后把主副参数结果复制成偏差标称值。

命令语法: FUNCtion:DEV<n>:REFerence:FILL

参数:

<n>: 字符 1 或字符 2 都能设定主参数和副参数的偏差标称值

例如:

WrtCmd("FUNC:DEV1:REF:FILL");

设定主、副参数的偏差标称值

7.1.8.9 FUNCtion:StepDELay

描述:设置仪器的步进延时时间,字符?可以查询当前的步进延时时间参数。

命令语法: StepDELay <value> / MIN / MAX

查询语法: FUNC:SDEL?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 数据格式,以 1mS 为分辨率的 0—60 秒时间。

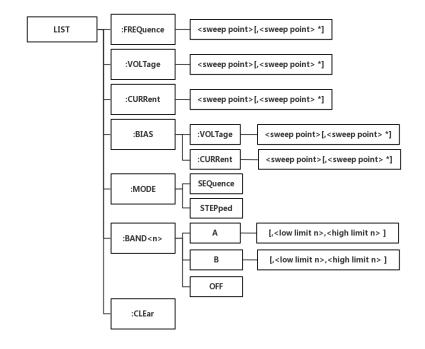
MIN: 设定延时参数为 0 秒

MAX:设定延时参数为60秒

例如:

WrtCmd("FUNC:SDEL 5S");

设定步进延时参数为5秒


WrtCmd("FUNC:SDEL? ");

返回5,表明当前的步进延时参数为5秒

7.1.9 LIST 子系统命令集

描述:用于设定列表扫描测量功能,扫描点的设定,扫描模式的设定,扫描比较极限的设定。

命令树:

7.1.9.1 LIST:FREQuency

注意:以下两种命令不可同时使用,具体参考 3.14.2 两列参数不能相同。

描述:用于设置列表扫描点第一列的扫描测量功能为频率扫描,且清除原来 列表扫描点并设置扫描点频率。可以查询当前各频率扫描点频率。

命令语法: LIST:FREQuency <value>[,<value>*]

查询语法: LIST:FREQuency?

查询返回: <NR3>[,<NR3>*]<NL^END>

注意: *部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式, HZ 和 KHZ 为后缀单位, 范围 20HZ~200KHZ(TH2830)之间, 否则查询返回出错。

注意: HZ 即为 Hz, KHZ 即为 kHz (1E3 Hz)。

例如:

WrtCmd("LIST:FREQ 1E3,2E3,3E3,4E3");

设扫描点 1 为 1KHZ;

设扫描点 2 为 2KHZ;

设扫描点 3 为 3KHZ;

设扫描点 4 为 4KHZ

描述:用于设置列表扫描点第二列的扫描测量功能为频率扫描,且清除原来 列表扫描点并设置扫描点频率。可以查询当前各频率扫描点频率。

命令语法: LIST:FREQuency1 <value>[,<value>*]

注意: *部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式, HZ 和 KHZ 为后缀单位,范围 20HZ~200KHZ(TH2830)之间,否则查询返回出错。

注意: HZ 即为 Hz, KHZ 即为 kHz (1E3 Hz)。

例如:

WrtCmd("LIST:FREQ1 1E3,2E3,3E3,4E3");

设扫描点1为1KHZ;

设扫描点 2 为 2KHZ;

设扫描点 3 为 3KHZ:

设扫描点 4 为 4KHZ

7.1.9.2 LIST:VOLTage

注意:以下两种命令不可同时使用,具体参考 3.14.2 两列参数不能相同。

描述:用于设置列表扫描点第一列的扫描测量功能为电平扫描,且清除原来 各列表扫描点表格测试电平数据并重新设定扫描点测试电平。可以查询当前 仪器列表各扫描点测试电平。

命令语法: LIST:VOLTage <value>[,<value>*]

查询语法: LIST:VOLTage?

查询返回: <NR3>[,<NR3>*]<NL^END>

注意: 列表扫描点测试电平在应在 10mV-2V 之间, 否则查询返回出错。

注意: *部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式,可以加后缀单位 V。

例如:

WrtCmd("LIST:VOLT 1.5")

设定扫描点 1 为 1.5V 电平

WrtCmd("LIST:VOLT 1E-2,2E-2,3E-2,4E-2")

分别设定扫描点 1, 2, 3, 4 电平为 10mV,20mV,30mV,40mV

● 描述:用于设置列表扫描点第二列的扫描测量功能为电平扫描,且清除原来各列表扫描点表格测试电平数据并重新设定扫描点测试电平。可以查询当前 仪器列表各扫描点测试电平。

命令语法: LIST:VOLTage1 <value>[,<value>*]

注意: 列表扫描点测试电平在应在 10mV-2V 之间, 否则查询返回出错。

注意: *部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式,可以加后缀单位 V。

例如:

WrtCmd("LIST:VOLT1 1.5")

设定扫描点 1 为 1.5V 电平

WrtCmd("LIST:VOLT1 1E-2,2E-2,3E-2,4E-2")

分别设定扫描点 1, 2, 3, 4 电平为 10mV,20mV,30mV,40mV

7.1.9.3 LIST:CURRent

注意:以下两种命令不可同时使用,具体参考 3.14.2 两列参数不能相同。

描述:用于设置列表扫描点第一列的扫描测量功能为电流扫描,且清除原来 各列表扫描点表格测试电流数据并重新设定扫描点测试电流。可以查询当前 仪器列表各扫描点测试电流。

命令语法: LIST:CURRent <value>[,<value>*]

查询语法: LIST:CURRent?

查询返回: <NR3>[,<NR3>*]<NL^END>

注意: 列表扫描点测试电流应在内阻为 100Ω 时 100uA-20mA 之间,内阻为 30Ω 时 333uA-66.7mA 之间,否则查询返回出错。

注意: *部分表示最多 201 个扫描点。

参数: <value>为 NR1, NR2 或 NR3 数据格式,可以加后缀单位 A。

例如:

WrtCmd("LIST:CURR 10MA")

设定扫描点 1 为 10mA

WrtCmd("LIST:CURR 1E-2,2E-2,3E-3,4E-3")

分别设定扫描点 1,2,3,4 测试电流为 10mA,20mA,3mA,4mA

描述:用于设置列表扫描点第二列的扫描测量功能为电流扫描,且清除原来 各列表扫描点表格测试电流数据并重新设定扫描点测试电流。可以查询当前 仪器列表各扫描点测试电流。

命令语法: LIST:CURRent1 <value>[,<value>*]

注意: 列表扫描点测试电流应在内阻为 100Ω 时 100uA-20mA 之间,内阻为 30Ω 时 333uA-66.7mA 之间,否则查询返回出错。

注意: *部分表示最多 201 个扫描点。

参数: <value>为 NR1, NR2 或 NR3 数据格式,可以加后缀单位 A。

例如:

WrtCmd("LIST:CURR1 10MA")

设定扫描点 1 为 10mA

WrtCmd("LIST:CURR1 1E-2,2E-2,3E-3,4E-3")

分别设定扫描点 1,2,3,4 测试电流为 10mA,20mA,3mA,4mA

7.1.9.4 LIST:BIAS:VOLTage

注意: 以下两种命令不可同时使用, 具体参考 3.14.2 两列参数不能相同。

描述:用于设置列表扫描点第一列的扫描测量功能为偏置电压扫描,且清除原来各列表扫描点表格直流偏置电压并重新设定。可以查询当前仪器各扫描点直流偏置电压。

命令语法: LIST:BIAS:VOLTage <value>[,<value>*]

查询语法: LIST:BIAS:VOLTage?

查询返回: <NR3>[,<NR3>*]<NL^END>

注意: *部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式

例如:

WrtCmd("LIST:BIAS:VOLT 1.5V")

设扫描点 1 的直流偏置电压为 1.5V

描述:用于设置列表扫描点第二列的扫描测量功能为偏置电压扫描,且清除原来各列表扫描点表格直流偏置电压并重新设定。可以查询当前仪器各扫描点直流偏置电压。

命令语法: LIST:BIAS1:VOLTage <value>[,<value>*]

注意: *部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式

例如:

WrtCmd("LIST:BIAS1:VOLT 1.5V")

设扫描点 1 的直流偏置电压为 1.5V

7.1.9.5 LIST:BIAS:CURRent

注意:以下两种命令不可同时使用,具体参考 3.14.2 两列参数不能相同。

描述:用于设置列表扫描点第一列的扫描测量功能为偏置电流扫描,且清除原来各列表扫描点表格直流偏置电流并重新设定。可以查询当前仪器各扫描点直流偏置电流。

命令语法: LIST:BIAS:CURRent <value>[,<value> *]

查询语法: LIST:BIAS:CURRent?

查询返回: <NR3>[,<NR3> *]<NL^END>

注意: 仅 TH2832 具有内偏置, TH2830 无内偏置, 需外接直流偏置电流源。

*部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式

例如:

WrtCmd("LIST:BIAS:CURR 100MA")

设扫描点 1 的直流偏置电流为 100mA

WrtCmd("LIST:BIAS:CURR 1E-2,2E-2,3E-2,4E-2")

分别设扫描点 1,2,3,4 的直流偏置电流为 10mA, 20mA, 30mA, 40mA

● 描述:用于设置列表扫描点第二列的扫描测量功能为偏置电流扫描,且清除原来各列表扫描点表格直流偏置电流并重新设定。可以查询当前仪器各扫描点直流偏置电流。

命令语法: LIST:BIAS1:CURRent <value>[,<value> *]

注意: 仅 TH2832 具有内偏置, TH2830 无内偏置, 需外接直流偏置电流源。

*部分表示最多 201 个扫描点。

参数:

<value>为 NR1, NR2 或 NR3 数据格式

例如:

WrtCmd("LIST:BIAS1:CURR 100MA")

设扫描点 1 的直流偏置电流为 100mA

WrtCmd("LIST:BIAS1:CURR 1E-2,2E-2,3E-2,4E-2")

分别设扫描点 1,2,3,4 的直流偏置电流为 10mA, 20mA, 30mA, 40mA

7.1.9.6 LIST:MODE

描述;设定仪器列表扫描模式。可查询当前仪器列表扫描模式。

命令语法: LIST:MODE SEQuence / STEPped

查询语法: LIST:MODE?

查询返回: SEQ/STEP<NL^END>

参数:

SEQuence 连续模式

STEPped 单步模式

例:

WrtCmd("LIST:MODE SEQ")

设置仪器列表扫描模式为连续模式

WrtCmd("LIST:MODE?")

返回 SEQ, 表明当前仪器列表扫描模式为连续模式

7.1.9.7 LIST:BAND<n>

描述;用于设定仪器列表扫描设置表格中极限数据。可以查询当前设定极限数据。

命令语法:

LIST:BAND<n><parameter>[,<low limit n>,<high limit n>]

查询语法: LIST:BAND<n>?

查询返回: <parameter>,<low limit n>,<high limit n>

参数:

<n>: 1到201(NR1格式),第n行扫描点

<parameter>: A 用测量结果的主参数与上下限进行比较

B用测量结果的副参数与上下限进行比较

OFF 不进行比较

<low limit n>: NR1,NR2 或 NR3 数据格式,第 n 行扫描点下限数据

<high limit n>: NR1,NR2 或 NR3 数据格式,第 n 行扫描点上限数据

例如:

WrtCmd("LIST:BAND1 A,10,20")

设置第一行扫描点主参数的上限为10,下限为20(单位依据功能选择)

WrtCmd("LIST:BAND3 OFF")

设置关闭第三行比较功能

7.1.9.8 LIST:CLEar

描述: 用于清除仪器列表扫描模式的所有数据内容。

命令语法: LIST:CLEar:ALL

例如: WrtCmd("LIST:CLE")

7.1.10 APERture 子系统命令集

描述:用于设定测量的速度,测量中使用的平均次数。字符?可以查询当前的测量的速度,测量中使用的平均次数。

命令语法:

APERture FAST / MEDium / SLOW[,<value>]

查询语法: APERture?

查询返回: FAST / MEDium / SLOW[,<NR1>]<NL^END>

参数:

FAST: 快速约 75 次/秒

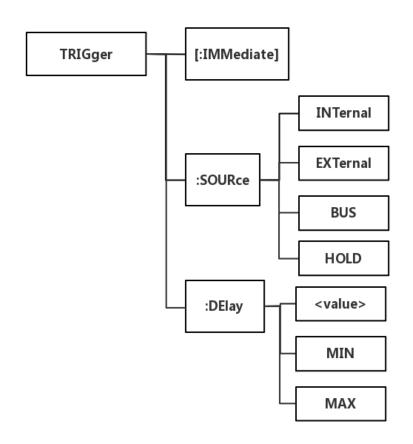
MEDium: 中速 11 次/秒

SLOW: 慢速 2.7 次/秒

<value> 1至 255 (NR1) 平均数字。

例如:

WrtCmd("APER MED,55");


设定测量的速度为中速,测量中使用的平均次数为55

WrtCmd("APER?");

返回 MED,55, 表明当前测量的速度为中速,测量中使用的平均次数为 55

7.1.11 TRIGger 子系统命令集

描述:用于设定仪器的触发源,触发后的延时,和触发仪器测量。命令树:

7.1.11.1 TRIGger:IMMediate

描述: 执行触发仪器测量一次。

命令语法: TRIGger[:IMMediate]

例如: WrtCmd("TRIG");

7.1.11.2 TRIGger:SOURce

描述: 设定仪器的触发源模式,字符?可以查询当前的触发源模式。

命令语法: TRIGger:SOURce INTernal / EXTernal / BUS / HOLD

查询语法: TRIGger:SOURce?

查询返回: INT / EXT / BUS / HOLD<NL^END>

参数:

INTernal 被仪器自动触发,是仪器的默认设置。

EXTernal 被 HANDLER 接口触发。

BUS 被 RS232 接口/ GPIB 接口/USB 接口/LAN 接口等用指令触

发。

HOLD 在面板按 TRIGGER 键触发。

例如:

WrtCmd("TRIG:SOUR BUS");

设定仪器的触发源模式为总线模式

WrtCmd("TRIG:SOUR?");

返回 BUS,表明当前仪器的触发源模式为总线模式

7.1.11.3 TRIGger:DELay

描述: 设定仪器触发后的延时时间,字符?可以查询当前的延时参数。

命令语法: TRIGger:DELay <value> / MIN / MAX

查询语法: TRIGger:DELay?

查询返回: <NR3><NL^END>

参数:

<value>: NR1,NR2,NR3 据格式,以 1mS 为分辨率的 0—60 秒时间。。

MIN: 设定延时参数为 0 秒

MAX:设定延时参数为60秒

例:

WrtCmd("TRIG:DEL 5S");

设定延时参数为5秒

WrtCmd("TRIG:DEL?");

返回5,表明当前延时参数为5秒

7.1.12:FETCH?子系统命令集

描述: [:IMP]?命令使 TH2830 把最后一次测量的结果送到 TH2830 的输出缓冲区。

查询语法: FETCh[:IMP]?

例如:

WrtCmd("TRIG:SOUR BUS");

WrtCmd("TRIG");

WrtCmd("FETC?");

TH2830 提供 ASCII 码用于结果数据传输,详情如下。

■ 在元件测量显示,档号显示,档计数显示中 ASCII 数据输出格式描述下示:

SN.NNNNNESNN , SN.NNNNNESNN , SN 或 SNN NL^END <DATA A> <DATA B> <状态> <档号>

参数: <DATA A>,<DATA B>格式: <DATA A> (主参测量数据), <DATA B> (副参测量数据)使用 12 位 ASII 码格式,如下:

SN.NNNNNESNN

(S: +/-, N: 0 到 9, E: Exponent Sign(指数标志))

<状态>格式: 当取如下测量数据, <状态>数据将显示测量状态。

状态	描述
-1	(数据缓冲存储器中) 无数据
0	普通测量数据
+1	模拟电桥不平衡
+2	A/D 转换不工作
+3	信号源过载
+4	恒压不可调

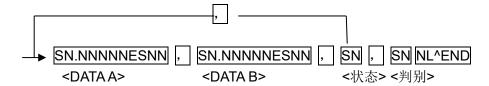
<状态>所示数据输出格式用 2 位 ASCII 码特征长度格式,如下:

SN (S: +/-, N: 0 到 4)

注意: 当<状态>为-1,1 或2时,测量数据为+9.99999E+37。当<状态>为0,3或4时,实际测量数据超出。

<档号>格式: 该数据显示档号分选结果,如下示:

数据	分选结果
0	超差
+1	档
+2	档 2
+3	档 3
+4	档 4
+5	档 5
+6	档 6
+7	档 7
+8	档8
+9	档 9


+10 附属档

只有仪器比较功能置于 ON (打开) 时, <档号>数据才将显示。

<档号>数据输出格式用2到3位ASCII码特征数据长度,如下:

SN 或 SNN (S: +/-, N: 0 到 9)

■ 在列表扫描显示页中 ASCII 数据输出格式如下图,回路数据即代替扫描点编号。

参数: <DATA A>,<DATA B>,<状态>描述同前,<判别>描述如下:

数据	结果
-1	偏低
0	符合
+1	偏高

<输入/输出>格式: 该数据显示列表扫描比较功能结果。

当列表扫描测量比较功能关闭(OFF)时, <输入/输出>数据输出结果为 0。

<输入/输出>数据输出格式使用 2 位 ASCII 码固定长度格式,如下:

SN (S: +/-, N: 0 到 1)

7.1.13 RS232 自动返回

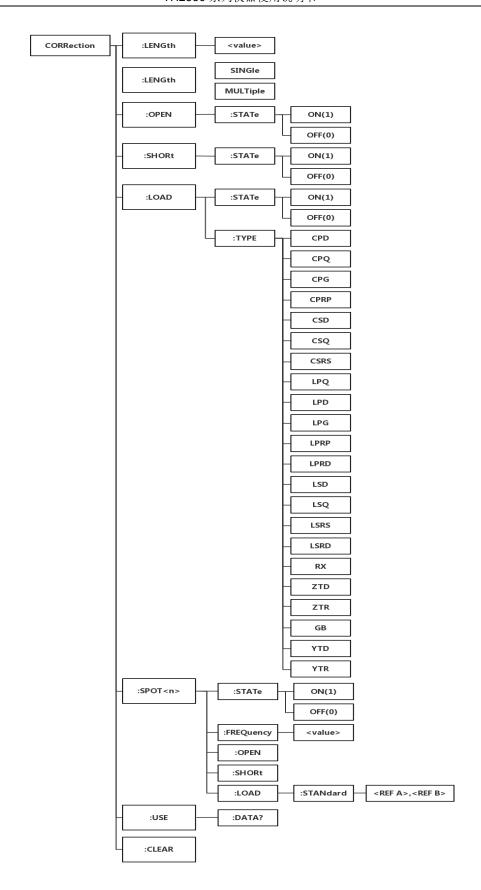
描述: 自动返回测试结果设置(关机后不保存状态)

命令语句::RS232:PRINT <0|OFF|1|ON>

参数:

0/OFF----表示关闭自动返回状态;

1/ON----表示触发测试结束后自动返回本次的测试结果,结果格式同上FETCH?命令:


例如:

:RS232:PRINT 0 ----关闭触发自动返回设置

:RS232:PRINT 1 ----触发结束后自动返回测试数据

7.1.14 CORRection 子系统命令集

描述:用于设定用户校正功能,开路,短路,负载校正的设定。命令树:

7.1.14.1 CORRection:LENGth

描述: 设定仪器的校正电缆长度,字符? 可以查询当前设定电缆长度。

命令语法: CORRection:LENGth <value>

查询语法: CORRection:LENGth?

查询返回: <NR1><NL^END>

参数<value>是 0, 1, 2 或 4 加后缀单位 M 的参数。(现只支持 0m 数据)

例如:

WrtCmd("CORR:LENG 0M");

设定仪器的电缆长度为0米

WrtCmd("CORR:LENG?");

返回 0, 表明当前仪器的电缆长度为 0米

7.1.14.2 CORRection: METHod

描述: 用于设定仪器的校正模式,字符?可以查询仪器设定校正模式。

命令语法: CORRection:METHod SINGle / MULTiple

查询语法: CORRection:METHod?

查询返回: SINGle / MULTiple<NL^END>

参数:

SINGle 设定或返回单通道模式

MULTiple 设定或返回多通道模式

例如:

WrtCmd("CORR:METH MULT")

用于设定仪器为多通道模式

7.1.14.3 CORRection:OPEN

描述: 用于执行 41 个预置测试点开路校正数据(TH2832 为 41 个预置测试点)。

命令语法: CORRection:OPEN

7.1.14.4 CORRection:OPEN:STATe

描述: 设定仪器的开路校正功能,字符?可以查询当前仪器的开路校正功能状态。

命令语法: CORRection:OPEN:STATe ON / OFF / 1 / 0

查询语法: CORRection:OPEN:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价,允许开路校正

字符 0 与 OFF 等价,禁止开路校正

例如:

WrtCmd("CORR:OPEN:STAT ON")

设定仪器的开路校正功能为开启状态

WrtCmd("CORR:OPEN:STAT?")

返回 1,表明当前仪器的开路校正功能为开启状态

7.1.14.5 CORRection:SHORt

描述:用于执行 41 个预置测试点短路校正数据(TH2832 为 41 个预置测试点)。

命令语法: CORRection:SHORt

7.1.14.6 CORRection:SHORt:STATe

描述:设定仪器短路校正功能,字符?可以查询当前的仪器的短路校正状态。

命令语法: CORRection:SHORt:STATe ON / OFF / 1 / 0

查询语法: CORRection:SHORt:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价, 允许短路校正

字符 0 与 OFF 等价,禁止短路校正

例如:

WrtCmd("CORR:SHOR:STAT ON")

设定仪器的短路校正功能为开启状态

WrtCmd("CORR:SHOR:STAT?")

返回 1, 表明当前仪器的短路校正功能为开启状态

7.1.14.7 CORRection:LOAD:STATe

描述:设定仪器负载校正功能,字符?可以查询当前的负载校正功能状态。

命令语法: CORRection:LOAD:STATe ON / OFF / 1 / 0

查询语法: CORRection:LOAD:STATe?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价,允许负载校正

字符 0 与 OFF 等价,禁止负载校正

例如:

WrtCmd("CORR:LOAD:STAT ON")

设定仪器的负载校正功能为开启状态

WrtCmd("CORR:LOAD:STAT?")

返回 1, 表明当前仪器的负载校正功能为开启状态

7.1.14.8 CORRection:LOAD:TYPE

描述: 设定仪器负载校正的被测组合参数功能,字符?可以查询当前的组合参数类型。

命令语法: CORRection:LOAD:TYPE <function>

查询语法: CORRection:LOAD:TYPE?

查询返回: <function><NL^END>

参数<function>:

CPD	设定"功能"为 Cp-D	LPRP	设定"功能"为 Lp-Rp
CPQ	设定"功能"为 Cp-Q	LSD	设定"功能"为 Ls-D
CPG	设定"功能"为 Cp-G	LSQ	设定"功能"为 Ls-Q
CPRP	设定"功能"为 Cp-Rp	LSRS	设定"功能"为 Ls-Rs
CSD	设定"功能"为 Cs-D	RX	设定"功能"为 R-X
CSQ	设定"功能"为 Cs-Q	ZTD	设定"功能"为 Ζ-θ°
CSRS	设定"功能"为 Cs-Rs	ZTR	设定"功能"为 Ζ-θ r
LPQ	设定"功能"为 Lp-Q	GB	设定"功能"为 G-B
LPD	设定"功能"为 Lp-D	YTD	设定"功能"为 Y-0°
LPG	设定"功能"为 Lp-G	YTR	设定"功能"为 Υ-θ r
LPRD	设定"功能"为 Lp-Rd	RPQ	设定"功能"为 Rp-Q
LSRD	设定"功能"为 Ls-Rd	RSQ	设定"功能"为 Rs-Q

WrtCmd("CORR:LOAD:TYPE CPD")

例如:

设定仪器负载校正的被测组合参数功能为 Cp-D

WrtCmd("CORR:LOAD:TYPE?")

返回 CPD,表明当前仪器负载校正的被测参数功能为 Cp-D

7.1.14.9 CORRection:SPOT<n>:STATe

描述:用于设定特定频率点,字符?可以查询当前各频率点(频率 1、频率 2)的状态。

命令语法: CORRection:SPOT<n>:STATe ON / OFF / 1 / 0

查询语法: CORRection:SPOT<n>:STATe?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

<n>: 1-10 个点其中的一个

<n>:1(频率点1)、2(频率点2)

例如:

WrtCmd("CORR:SPOT1:STAT ON")

设定频率点 1 的校正功能为开启状态

WrtCmd("CORR:SPOT1:STAT?")

返回 1, 表明当前频率点 1 的校正功能为开启状态

7.1.14.10 CORRection:SPOT<n>:FREQuency

描述: 用于设定特定校正点频率,字符?可以查询当前特定校正点频率。

命令语法: CORRection:SPOT<n>:FREQuency <value>

查询语法: CORRection:SPOT<n>:FREQuency?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式加 HZ、kHZ 和 MHZ 后缀的参数。
<value>的范围应在 20HZ~200KHZ(TH2832)之间,否则返回数据出错。

<n>:1-201

例如:

WrtCmd("CORR:SPOT1:FREQ 2kHZ")

设置校正点 1 的频率为 2kHZ

WrtCmd("CORR:SPOT1:FREQ?")

返回 2k, 表明当前校正点 1 的频率为 2kHZ

7.1.14.11 CORRection:SPOT<n>:OPEN

描述:对仪器特定校正点执行开路校正。

命令语法: CORRection:SPOT<n>:OPEN

参数:

<n>: 1-201

例如:

WrtCmd("CORR:SPOT1:OPEN")

对校正点1进行开路校正

7.1.14.12 CORRection:SPOT<n>:SHORt

描述:对仪器特定校正点执行短路校正。

命令语法: CORRection:SPOT<n>:SHORt

参数:

<n>: 1-201

例如:

WrtCmd("CORR:SPOT1:SHOR");

对校正点 1 进行短路校正

7.1.14.13 CORRection:SPOT<n>:LOAD:STANdard

描述:对仪器特定校正点标准参考量下的负载校正。可以查询仪器当前当前校正负载校正的标准参考量。

命令语法: CORRection:SPOT<n>:LOAD:STANdard <REF.A>,<REF.B>

查询语法: CORRection:SPOT<n>:LOAD:STANdard?

查询返回: <REF.A>,<REF.B><NL^END>

参数:

<n>: 1-201

<REF.A>: NR1, NR2 或 NR3 的数据格式,为主参数的标准参考量

<REF.B>: NR1, NR2 或 NR3 的数据格式,为副参数的标准参考量

例如:

WrtCmd("CORR:SPOT1:LAOD:STAN 0.0017,2");

设定校正点 1 标准参考量下的负载校正 A: 1.7mF, B: 2 (单位依据功能选择,比如功能 Cp-Q)

WrtCmd("CORR:SPOT1:LAOD:STAN?");

返回 0.0017,2, 表明当前校正点 1 标准参考量下的负载校正 A: 1.7mF, B: 2 (单位依据功能选择, 比如功能 Cp-Q)

7.1.14.14 CORRection: USE: DATA?

描述: 查询返回 201 个校正点开路/短路/负载校正测量数据。

查询语法: CORRection:USE:DATA?

查询返回:

<open1 A>,<open1 B>,<short1 A>,<short1 B>,<load1 A>,<load1 B>,

<open2 A>,<open2 B>,<short2 A>,<short2 B>,<load2 A>,<load2 B>,

<open3 A>,<open3 B>,<short3 A>,<short3 B>,<load3 A>,<load3 B>,

. ,

<open201 A>,<open201 B>,<short201 A>,<short201 B>,<load201
A>,<load201 B>

参数: NR3 数据格式

<open<n> A>为校正点 n 处的主参数开路校正数据

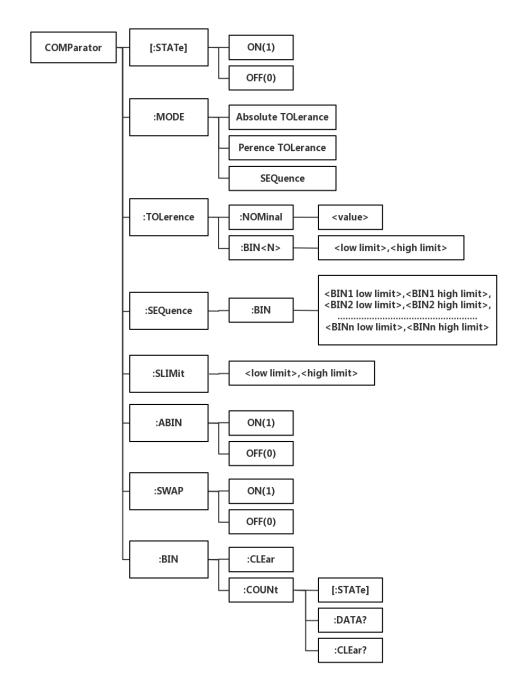
<open<n> B>为校正点 n 处的副参数开路校正数据

<short<n> A>为校正点 n 处的主参数短路校正数据

<short<n>B>为校正点n处的副参数短路校正数据

<load<n> A>为校正点 n 处的主参数负载校正数据

<load<n> B>为校正点 n 处的副参数负载校正数据


7.1.14.15 CORRection:CLEar

描述:清除所有校正点的校正数据。

命令语法: CORRection:CLEar

7.1.15 COMParator 子系统命令集

COMParator 子系统命令集用于设定档比较器功能,包括比较开关的设定,极限列表的设定。命令树见下一页:

7.1.15.1 COMParator[:STATe]

描述: 设定仪器比较功能开启或关闭。可以查询当前比较功能状态。

命令语法: COMParator[:STATe]ON / OFF / 1 / 0

查询语法: COMParator[:STATe]?

查询返回: <NR1><NL^END>

参数:

字符1与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("COMP ON");

设定比较功能开启

WrtCmd("COMP?");

返回1,表明当前比较功能开启

7.1.15.2 COMParator:MODE

描述:设定仪器比较功能极限方式,字符?可以查询当前设定的极限方式。

命令语法: COMParator:MODE ATOLerance / PTOLerance / SEQuence

查询语法: COMParator:MODE?

查询返回: ATOL/PTOL/SEQ<NL^END>

参数:

ATOLerance 设置绝对误差方式

PTOLerance 设置相对误差方式

SEQuence 设置连续方式

例如:

WrtCmd("COMP:MODE ATOL");

设定仪器比较功能极限方式为绝对误差方式

WrtCmd("COMP:MODE?");

返回ATOL,表明当前仪器比较功能极限方式为绝对误差方式

7.1.15.3 COMParator:TOLerance:NOMinal

描述: 设定比较功能误差方式的标称量(该功能只在极限方式被设为误差模式时有效)。可以查询当前仪器设定误差模式的标称量。

命令语法: COMParator:TOLerance:NOMinal <value>

查询语法: COMParator:TOLerance:NOMinal?

查询返回: <value><NL^END>

参数:

<value>: NR1, NR2 或 NR3 数据格式的标称量。

例如:

WrtCmd("COMP:TOL:NOM 100E-12");

设定比较功能误差方式的标称量(主参数)为 **100pF**(单位依据功能选择, 比如功能 **Cp-Rp**)

WrtCmd("COMP:TOL:NOM?");

返回 100E-12, 表明当前比较功能误差方式的标称量(主参数)为 100pF(单位依据功能选择,比如功能 Cp-Rp)

7.1.15.4 COMParator:TOLerance:BIN<n>

描述: 设定比较功能误差模式各档上下限极限数值(该功能只在极限方式被设定为误差模式时有效)。可以查询当前仪器设定各档上下限数值。

命令语法: COMParator:TOLerance:BIN<n><low limit>,<high limit>

查询语法: COMParator:TOLerance:BIN<n>?

查询返回: <low limit>,<high limit><NL^END>

参数:

<n>: 1到9(NR1): 档号数

<low limit>: NR1, NR2 或 NR3 格式数据: 下限数据

<high limit>: NR1, NR2 或 NR3 格式数据: 上限数据

注: 下限数据应小于上限数据, 否则提示出错信息。

例如:

WrtCmd("COMP:TOL:BIN1 -5,5");

设定比较功能误差模式 1 档下限-5F, 上限 5F(单位依据功能选择,比如功能 Cp-Rp)

WrtCmd("COMP:TOL:BIN1?");

返回-5,5, 表明当前比较功能误差模式 1 档下限-5F, 上限 5F(单位依据功能选择, 比如功能 Cp-Rp)

7.1.15.5 COMParator:SEQuence:BIN

描述: 设定比较功能连续模式上下限数据(该功能只在极限方式被设定为连续模式时有效)。可以查询仪器当前设定各档上下限数值。

命令语法: COMParator:SEQuence:BIN <BIN1 low limit>,<BIN1 high limit>,<BIN2 high limit>,..., <BINn high limit>

查询语法: COMParator:SEQuence:BIN?

查询返回: <BIN1 low limit>,<BIN1 high limit>,<BIN2 high limit>,...,<BINn high limit><NL^END>

参数: NR1,NR2 或 NR3 数据格式

<BIN1 low limit> 档 1 的下限数值

<BIN1 high limit> 档 1 的上限数值

<BINn high limit> 档 n 的上限数值(n 最大为 9)

注:下限小于上限。

例如:

WrtCmd("COMP:SEQ:BIN 10,20,30,40,50");

设定比较功能连续模式下 1 档下限 10,上限 20,2 档上限 30,3 档上限 40,4 档上限 50(单位依据功能选择,比如功能 Q-Cp)

WrtCmd("COMP:SEQ:BIN?");

返回 10,20,30,40,50,表明当前比较功能连续模式下 1 档下限 10,上限 20,2 档上限 30,3 档上限 40,4 档上限 50(单位依据功能选择,比如功能 Q-Cp)

7.1.15.6 COMParator: Secondary LIMit

描述: 设定仪器比较功能副参数上下限数值。可以查询仪器当前副参数上下限数值。

命令语法: COMParator:SLIMit < low limit>,< high limit>

查询语法: COMParator:SLIMit?

查询返回: <low limit>,<high limit><NL^END>

参数:

<low limit>: NR1, NR2 或 NR3 格式数据, 为下限数值

<high limit>: NR1, NR2 或 NR3 格式数据, 为上限数值

注:上限应大于下限,否则提示出错信息。

例如:

WrtCmd("COMP:SLIM 0.001,0.002")

设定仪器比较功能副参数下限 1mF,上限 2mF(单位依据功能选择,比如功能 Cp-Rp)

WrtCmd("COMP:SLIM?")

返回 0.001,0.002,表明当前仪器比较功能副参数下限 1mF,上限 2mF(单位依据功能选择,比如功能 Cp-Rp)

7.1.15.7 COMParator: Auxiliary BIN

描述: 设定档计数附属档开关。可以查询仪器当前附属档开关情况。

命令语法: COMParator:Auxiliary BIN ON / OFF / 1 / 0

查询语法: COMParator:Auxiliary BIN?

查询返回:<NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("COMP:ABIN ON")

设定档计数附属档为开启状态

WrtCmd("COMP:ABIN?")

返回 1, 表明当前档计数附属档为开启状态

7.1.15.8 COMParator:SWAP

描述:设定主副参数对调比较模式开关,例如:功能参数: Cp-D,选择: SWAP模式为 ON,则功能参数变为: D-Cp; 此时 1~9 档参数极限设置变为设定 D 的上下限,2and 档设置 Cp 极限。亦即选择 ON,则主副参数进行对调比较;反之,选择 OFF,按原顺序比较。可以查询当前仪器设定主副参数对调比较模式开关情况。

命令语法: COMParator:SWAP ON / OFF / 1 / 0

查询语法: COMParator:SWAP?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价

例如:

WrtCmd("COMP:SWAP ON");

设定主副参数对调比较模式为开启状态

WrtCmd("COMP:SWAP?");

返回 1, 表明当前主副参数对调比较模式为开启状态

7.1.15.9 COMParator:BIN:CLEar

描述:清除极限列表设置各档极限设置数据。

命令语法: COMParator:BIN:CLEar

7.1.15.10 COMParator:BIN:COUNT[:STATe]

描述:设定档计数功能开关(ON/OFF),可以查询当前仪器设定档计数开关情况。

命令语法: COMParator:BIN:COUNt[:STATe] ON / OFF / 1 / 0

查询语法: COMParator:BIN:COUNt[STATe]?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价, 相当于 FIX

例如:

WrtCmd("COMP:BIN:COUN ON")

设定档计数功能为开启状态

WrtCmd("COMP:BIN:COUN?")

返回 1, 表明当前档计数功能为开启状态

7.1.15.11 COMParator:BIN:COUNt:DATA

描述: 查询档计数比较结果。

查询语法: COMParator:BIN:COUNt:DATA?

查询返回: <BIN1 count>,<BIN2 count>,...,<BIN9 count>,<OUT OF BIN count>,<AUX BIN count><NL^END>

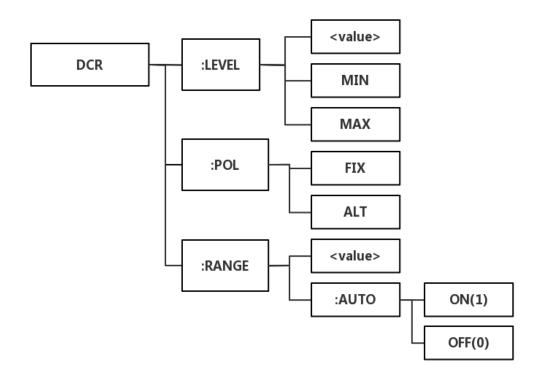
参数:

<BIN1-9 count>: NR1 数据格式,为 1-9 档的计数结果

<OUT OF BIN count>: NR1 数据格式,为超差档的计数结果

<AUX BIN count>: NR1 数据格式,为附属档的计数结果

7.1.15.12 COMParator:BIN COUNT:CLEar


描述:清除所有档计数结果。

命令语法: COMParator:BIN:COUNt:CLEar

7.1.16 DCR 子系统命令集

DCR 子系统命令集用于设置和查询 DCR 测量的量程、极性、电平参数。

命令树:

7.1.16.1 DCR:LEVEL

描述: 用于设定 DCR 测量电平,字符?可查询当前的电平值。

注意: 仅 TH2832 才可以设置不同的 DCR 电平值, TH2830 固定为 1V.

命令语法: DCR:LEVEL <value> / MIN / MAX

查询语法: DCR:LEVEL?

查询返回: <NR3><NL^END>

参数:

<value>: 可以是 NR1, NR2 或 NR3 格式数据

MIN:设定 DCR 测量电平最小值 50mV

MAX:设定 DCR 测量电平最大值 2V

例如:

WrtCmd("DCR:LEVEL MIN");

设置仪器的 DCR 测量电平为 50mV。

7.1.16.2 DCR:POL

描述: 用来设定 DCR 测量模式,字符?可查询当前的测量模式。

命令语法: DCR:LEVEL ALT / FIX

查询语法: DCR:POL?

查询返回: ALT / FIX<NL^END>

参数:

ALT 是正负电平交替测量方式

FIX 是正电平测量方式

例如:

WrtCmd("DCR:LEVEL ALT");

设置 DCR 测量模式为正负交替测量方式。

7.1.16.3 DCR:RANGE

描述: 用于设定 DCR 测试的量程,字符?可查询当前的量程参数。

命令语法: DCR:RANGE <value>

查询语法: DCR:RANG?

查询返回: <value><NL^END>

参数:

<value>可以是被测量元件的阻抗大小,可以是 NR1,NR2,NR3 数据格式加 OHM,KOHM 后缀的参数。

<value>可以是:

1 3 10 30

100 300 1000 3000

10000 30000 100000

例如:

WrtCmd("DCR:RANG 1KOHM");

用于设定仪器的量程为 1kOHM。

7.1.16.4 DCR:RANGe:AUTO

描述:用于设定仪器的量程自动选择方式,字符?可以查询当前的量程状态。

命令语法: DCR:RANG:AUTO ON / OFF / 1 / 0

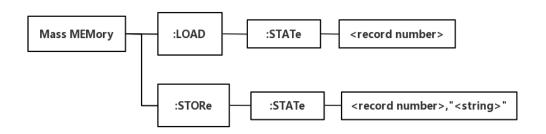
查询语法: DCR:RANG:AUTO?

查询返回: <NR1><NL^END>

参数:

字符 1 与 ON 等价

字符 0 与 OFF 等价


例如:

WrtCmd("DCR:RANG:AUTO ON");

用于设定仪器的量程为自动。

7.1.17 Mass MEMory 子系统命令集

Mass MEMory 子系统命令集用于文件的保存与加载。 命令树:

7.1.17.1 MMEMory:LOAD:STATe

描述:加载已保存的文件。

命令语法: MMEMory:LOAD:STATe <value>

参数:

<value>: 1 到 40 (NR1) 的文件序号。

例如:

WrtCmd("MMEM:LOAD:STAT 1");

加载 1 号文件

7.1.17.2 MMEMory:STORe:STATe

描述:保存当前仪器的设置到一个文件。

命令语法: MMEMory:STOR:STATe <value>,"<string>"

参数:

<value>: 1 到 40 (NR1) 的文件序号。

<string>: ASCII 字符串 (最长 16 个)

例如:

WrtCmd("MMEM:STOR:STAT 1, "Resistor meas"")

保存当前仪器的设置到 1 号文件,文件名 Resistor meas

WrtCmd("MMEM:STOR:STAT 1");

保存当前仪器的设置到1号文件,按默认文件名存储。

7.2 GPIB 公用命令

●*RST ●*TRG ●*IDN ●*TST

●*ESE ●*SRE ●*ESR ●*STB

●*OPC ●*CLS

7.2.1.1 *RST

用于复位仪器。

命令语法: *RST

7.2.1.2 *TRG

用于触发仪器测量,并且把测量结果送到仪器的输出缓冲。

命令语法: *TRG

7.2.1.3 *CLS

用于清除标准事件状态寄存器,服务请求状态寄存器.

命令语法: *CLS

7.2.1.4 *IDN?

用于返回 TH2830 的 ID。

查询语法: *IDN?

查询返回: <manufacturer>,<model>,<firmware>,<HW_version>,<NL^END>

参数:

<manufacturer>: 给出制造商名称(即 Tonghui)

<model>: 给出机器型号(如 TH2830)

<firmware>: 给出软件版本号(如 VER1.0.0)

<HW version>: 给出硬件版本号(如 HardWare Ver A5.0)

例如: WrtCmd("*IDN?");

7.2.1.5 *TST?

自检查询命令,用于执行内部自检并且给出自检错误信息报告。对于 TH2830 系列产品,查询报告的结果通常为"0",即没有错误。

查询语法: *TST?

查询返回: 0<NL^END>

7.2.1.6 *ESE

(standard Event Status Enable command)命令用于设置标准事件状态寄存器(standard event status register)各开放位。该命令查询返回事件状态允许寄存器的各开放位设置。

命令语法: *ESE<value>

查询语法: *ESE?

查询返回: <value><NL^END>

参数:

<value>: NR1 格式:操作状态寄存器各位的十进制表示方式。

事件状态寄存器的每个字节的定义如下表示:

位号	描述
7	Power On(PON) Bit:电源开启状态位
6	User Request(URQ) Bit:用户请求位
5	Command Error(EME) Bit:命令错误位
4	Execution Error(EXE) Bit:执行错误位
3	Device Dependent Error(DDE) Bit:设备依靠错误位
2	Query Error(QYE) Bit:查询错误位
1	Request Control(RQC) Bit:请求控制位
0	Operation Complete(OPC) Bit:操作完成位

7.2.1.7 *SRE

(Service Request Enable command)命令用于设置服务状态字节寄存器(the status byte register)各开放位。该命令查询返回服务状态字节允许寄存器的当前设置。

命令语法: *SRE<value>

查询语法: *SRE?

查询返回: <value><NL^END>

参数:

<value> 为 NR1 格式:状态字节寄存器各允许位的十进制表示形式。

状态字节寄存器各位定义如下表示:

位号	描述
7	Operation Status Register Summary Bit:操作状态寄存器摘要位
6	RQS(Request Service) Bit:请求服务位
5	RQS(Request Service) Bit:请求服务位 Standard Event Status Register Summary Bit:标准事件状态寄存器摘要位
4	MAV(Message Available) Bit:信息有效位
3-0	Always O(zero):始终为 O

7.2.1.8 *ESR?

查询返回标准事件状态寄存器的内容。

查询语法: *ESR?

查询返回: <value><NL^END>

参数:

<value>: NR1 格式:标准事件状态寄存器的内容的十进制表示形式。

事件状态寄存器各位的定义如下表示:

位号	描述
7	Power On(PON) Bit:电源开启状态位
6	User Request(URQ) Bit:用户请求位
5	Command Error(EME) Bit:命令错误位
4	Execution Error(EXE) Bit:执行错误位
3	Device Dependent Error(DDE) Bit:设备依靠错误位
2	Query Error(QYE) Bit:查询错误位
1	Request Control(RQC) Bit:请求控制位
0	Operation Complete(OPC) Bit:操作完成位

7.2.1.9 *STB?

读取服务状态字寄存器的内容。该命令的执行不会对状态字寄存器的内容造成影响。

查询语法: *STB?

查询返回: <value><NL^END>

参数:

<value>: NR1 格式,状态字寄存器内容的十进制表示形式。

状态字的各位定义如下表示:

位号	描述
7	Operation Status Register Summary Bit:操作状态寄存器摘要位
6	RQS(Request Service) Bit:请求服务位
5	Standard Event Status Register Summary Bit:标准事件状态寄存器摘要位
4	MAV(Message Available) Bit:信息有效位
3-0	Always O(zero):始终为 O

7.2.1.10 *OPC

用于当 TH2830 系列仪器完成对所有待测参数测量时设置标准事件状态寄存器 OPC 位。当仪器完成所有测量时,该命令将告知仪器在仪器的输出缓冲器中置数 ASCII 码形式"1"即十进制的 49。

命令语法: *OPC

查询语法: *OPC?

查询返回: 1 <NL^END>

例如:

OUTPUT 717;"*OPC"!

表示当上一条命令操作执行完成后设置仪器的 OPC 位。

第8章 Handler 接口使用说明

TH2830 系列测试仪给用户提供了 Handler 接口,该接口主要用于仪器分选结果的输出。当仪器使用于自动元件分选测试系统中时,该接口提供与系统的联络信号和分选结果输出信号。分选结果输出对应比较器的 10 档输出。HANDLER接口设计是灵活的,使用不同的操作程序后,所有输出信号状态根据使用要求定义的。

8.1 技术说明

如下框表显示了 TH2830 系列 HANDLER 接口技术说明。

输出信号: 低有效, 开集电极输出, 光电隔离

输出判别信号:

档比较功能: 合格档号, 超差档, 和不合格的状态

列表扫描比较功能: 各扫描点的 IN/OUT 及整个比较结果的 pass/fail

INDEX: AD 转换结束

EOC: 一次测量和比较结束 Alarm: 瞬间掉电检测通知

输入信号: 光电隔离

Keylock: 前面板键盘锁定 External Trigger: 脉宽≥1μS

8.2 操作说明

8.2.1 信号线定义

HANDLER 接口用三种信号:比较输出、控制输入及控制输出。档比较功能和列表扫描比较功能的信号线分别被定义成不同的比较输出信号和控制输入信号。

8.2.1.1 档比较功能

■ 比较输出信号:

/BIN1~/BIN9, /AUX, /OUT, /PHI(主参偏高), /PLO(主参偏低), /SREJ(副参不合格)。见图 8-1

■ 控制输出信号:

/INDEX(模拟测量完成信号),/EOM(测量结束及比较数据有效信号),/ALARM(仪器掉电信号)。

■ 控制输入信号:

/EXT.TRIG(外部触发信号,脉宽≥1µs)和/Keylock(键盘锁)。

以上各接点的信号分配及简要描述见表 8-1 和图 8-2, 时序图解见图 8-3。

管脚号	信号名	描述	
1	/BIN1		
2	/BIN2		
3	/BIN3		
4	/BIN4		
5	/BIN5	分档结果	
6	/BIN6	所有/BIN(档信号)输出都是开集电极	
7	/BIN7	输出。	
8	/BIN8		
9	/BIN9		
10	/OUT		
11	/AUX		
	,,,,,,,	外部触发:	
12		当触发模式设为 EXT.TRIG (外部触	
13	/EXT.TRIG	发)时, TH2836 被加到该管脚上的上	
		升沿脉冲信号所触发。	
		外部直流电压 2:	
14		与仪器内光电耦合的信号	
15	EXT.DCV2	(/EXT TRIG, /KeyLock; /ALARM,	
		/INDEX,/EOM)的直流电源供给脚。	
		仪器内部电源+5V:	
16		一般不推荐用户使用仪器内部的电	
17	+5V	源,如果一定要使用时,请确保使用的	
18		电流小于 0.3A, 且使信号线远离干扰	
		源。	
		主参数偏高:	
19	/PHI	测量结果比BIN1到BIN9中上限数值	
		大。 (见图 5-3)	
		主参数偏低:	
20	/PLO	测量结果比BIN1到BIN9中下限数值	
		小。(见图 5-3)	
		副参数不合格:	
21	/SREJ	测量结果不在副参数上下限范围内。	
		(见图 5-3)	
22	NC		
23	NC	没有连接	
24	NC		
25	/KEY LOCK	当该线有效时,TH2836 所有前面板	
20	/ILI LOOK	功能键都被锁定,不再起作用。	
		外部直流电压 1:	
27	EXT.DCV1	与仪器内光电耦合的信号(/BIN-	
28	LX1.DOV1	/BIN9, /AUX, /OUT, /PHI, /PLO,	
		/SREJ)的上拉直流电源供给脚。	
29	/ALARM	当掉电发生时,/ALARM 有效。	
30	/INDEX	当模拟测量完成且 TH2836 可以在	

		UNKNOWN 测试端连接下一个被测
		件(DUT)时/INDEX信号有效。然而,
		比较结果信号直到/EOM 有效时才是
		有效的。(见图 5-5)
		测量结束(End Of Measurement):
31	/EOM	当测量数据和比较结果有效时该信号
		有效。(见图 5-5)
32,33	COM2	外部电源 EXTV2 使用的参考地
34,35,36	COM1	外部电源 EXTV1 使用的参考地

表 8-1 档比较功能接点的信号分配表

副参数

图 8-1 档比较功能/PHI, /PLO, /SREJ 信号的分配区域示例

PLO (OUT)

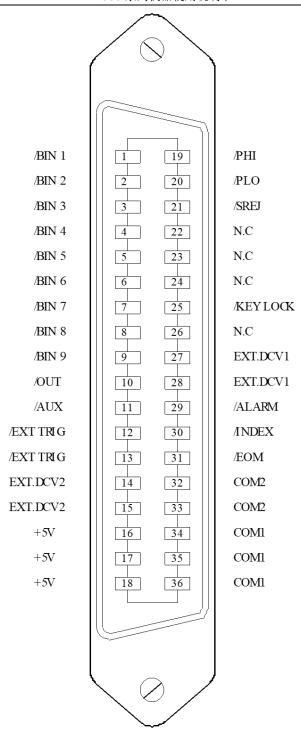
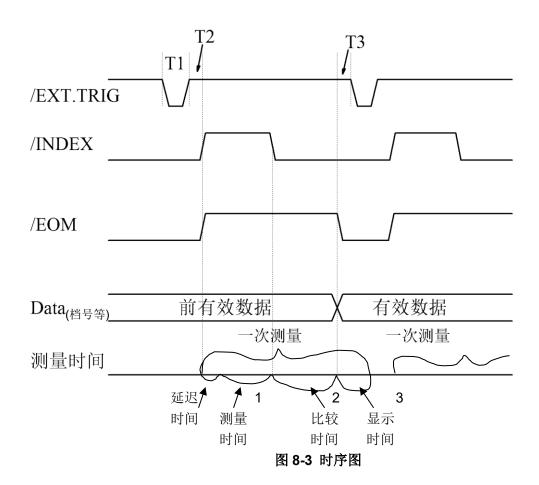



图 8-2 HANDLER 连接接口管脚定义

注:图中,/BIN1~/BIN9,/OUT,/AUX,/PHI,/PLO 及/SREJ 对应信号情况在列表扫描比较功能和档比

T3 /EOM 输出后触发等待时间	0us	_
T2 测量起始延迟时间	200us	显示时间 ³ + 200us
T1 触发脉宽	1us	_
时间	最小数值	最大数值

- 1. 测量时间参照 TH2836 操作说明书;
- 2. 典型的比较时间约为 1ms;
- 3. 每个显示页面的典型显示时间如下:
 - 元件测量显示页面(MEAS DISPLAY):约 8ms;
 - 档号显示页面(BIN NO.DISPLAY): 约 5ms;
 - 档计数显示页面(BIN COUNT DISPLAY):约 0.5ms

8.2.1.2 列表扫描比较功能

列表扫描比较功能信号定义与档比较功能中定义不同。其定义如下所示:

■ 比较输出信号:

/BIN1 - /BIN9 和/OUT 信号指示为各扫描点的 IN/OUT(合格或超差)判别。 参考图 8-4。/AUX 信号指示为 PASS/FAIL 判别,(在一次扫描期间列表中有一 个或多个不合格)。当一个扫描测量完成,这些信号将被输出。

■ 控制输出信号

/INDEX(模拟测量完成信号)和/EOM(测量结束信号)。

当/INDEX 和/EOM 有效时时序如下: (和档比较功能中不同)

● 持续扫描模式(SEQ sweep mode):

/INDEX 信号在最后一步扫描点的模拟测量完成时被声明有效。/EOM 信号在整个列表扫描测量完成后所有比较结果都有效时被声明有效。

● 单步扫描模式(STEP sweep mode):

/INDEX 信号在每一个扫描点的模拟测量完成后被声明有效。/EOM 信号在每步测量且比较完成后被声明有效。

列表扫描功能中信号接点分配和简要描述可参见表 8-3 及图 8-2 (列表扫描 比较功能管脚定义和档比较功能之定义相同),时序图见图 8-5。

管脚号	信号名	描述
1	/BIN1	扫描点 1 超出极限
2	/BIN2	扫描点 2 超出极限
3	/BIN3	扫描点 3 超出极限
4	/BIN4	扫描点 4 超出极限
5	/BIN5	扫描点 5 超出极限
6	/BIN6	扫描点 6 超出极限
7	/BIN7	扫描点7超出极限
8	/BIN8	扫描点8超出极限
9	/BIN9	扫描点9超出极限
10	/OUT	扫描点 10 超出极限
11	/AUX	当列表中有一个或多个不合格时/AUX 被声明有效
30	/INDEX	持续扫描模式(SEQ): //NDEX 信号在最后一步扫描点的模拟测量完成时被声明有效,此时 TH2836 之 UNKNOWN 测试端可以连接下一个被测件(DUT)。然而,比 较结果信号直到/EOM 有效时才是有效的。(见图 5) 单步扫描模式(STEP): //NDEX 信号在每一个扫描点的模拟测量完成后被声明有效。然而,比较结果信号直到/EOM 有效时才是有效。(见图 5)
31	/EOM	测量结束: 持续扫描模式(SEQ): /EOM 信号在整个列表扫描测量完成后且所有比较结果都有效时被声明有效。(见图 5) 单步扫描模式(STEP): /EOM 信号在每一个扫描点测量完成后且所有比较结果都有效时被声明有效。比较结果信号直到最后一步扫描点的/EOM 有效时才是有效(见图 5)。
其他		定义与比较功能相同。可参见表 2

表 8-3 列表扫描比较功能接点分配表

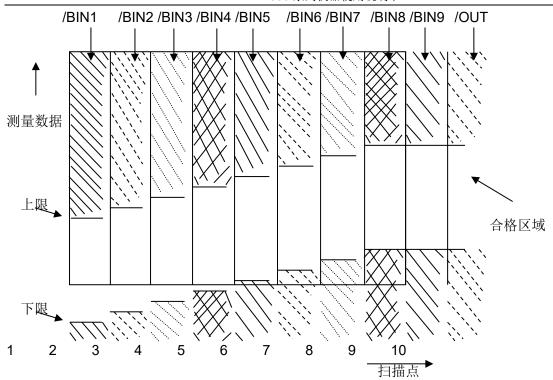


图 8-4 列表扫描比较功能信号区域示例

持续扫描模式 (SEQ SWEEP MODE):

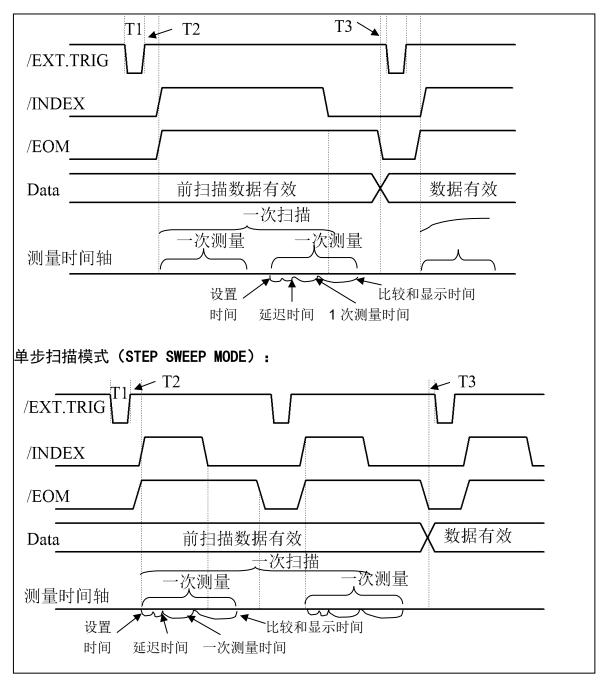


图 8-5 计时图解

注:

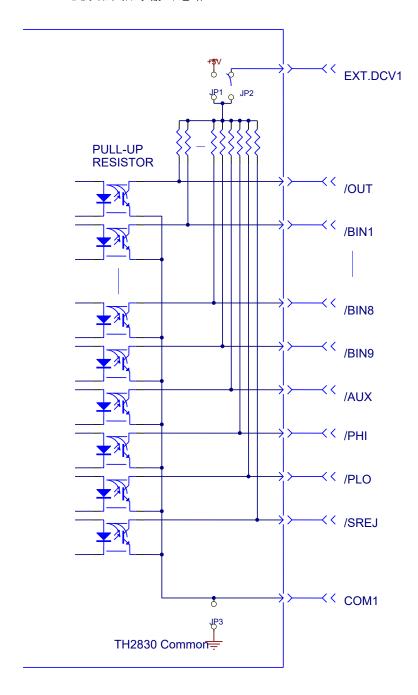
设置时间包括校正数据开关时间;

比较和显示时间约为 4.5ms;

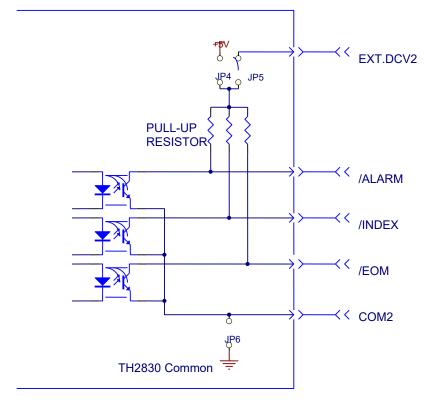
T1,T2,T3 参见图 8-3。

8.2.2 电气特征

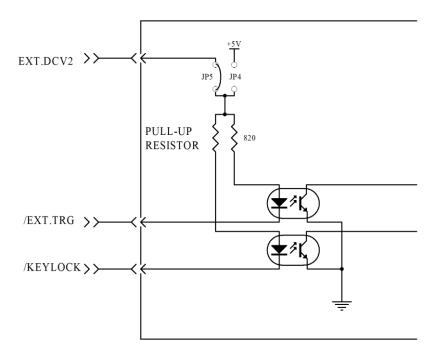
如前所述,比较功能和列表扫描比较功能中一些信号的含义不同。但是,在 这两种操作中这些信号的电气特征是相同的,因而下面的描述同样适合于档比较 功能和列表扫描功能。 直流隔离输出每个直流输出(管脚 1 到 16)都是经集电极开路光电耦合器输出隔离的。每根线输出电压由 HANDLER 接口板上的一上拉电阻设定。上拉电阻与内部提供电压(+5V)连接,或通过跳线与外部供给电压(EXTV: +5V)连接。


直流隔离输出的电气特征分为两个类型,见表8-4。

输出信号	输出额定电压		最大电流	电路参考地	
和11日 与	LOW	HIGH	取入电机	电 始参 写 地	
比较信号 /BIN1 - /BIN9 /AUX /OUT /PHI /PLO	≤0.5V	+5V+24V	6mA	内部上拉电压: TH2839 地 外部电压(EXTV1): COM1	
控制信号 /INDEX /EOM /ALARM	≤0.5V	+5V+24V	5mA	内部上拉电压: TH2839 地 外部电压(EXTV2): COM2	


表 8-4 直流隔离输出电气特征

8.2.3 HANDLER 接口板电路


比较结果信号输出电路

控制信号输出电路

控制信号输入电路

8.3 使用操作

在安装了 HANDLER 接口板后,使用 HANDLER 接口,设置极限列表用以使用比较功能或设置列表扫描列表用以使用列表扫描比较功能。而后设置 HANDLER 接口使其能 OUTPUT/INPUT(输出/输入)信号。下面的操作过程即为使用 HANDLER 接口比较功能或列表扫描比较功能的步骤。

比较功能设置步骤:

以下操作步骤为使用 HANDLER 接口比较功能步骤。

- 1. 按动[极限设置]软键,进入<极限列表设置>页面。
- 2. **<**极限列表设置>菜单中设置档计数标称值,档极限,详情可参见[DISP] 菜单键说明。
- 3. 动键盘光标键使屏幕反白光标条位于"比较"处,则在屏幕"软键"显示区域 (即菜单选项区域)显示:
 - ON
 - OFF
 - 4. 选择[ON]软键,则比较功能开启。
- 5. 按键[**DISP**]进入**<元件测量显示>**页面,然后选择[档号显示]或[档计数]软键,进入相应页面对被测件(**DUT**)进行测量;在此步骤中用户可以参照[**DISP**]菜单键说明对被测件(**DUT**)的计数,附属等功能进行设置。

注意:比较功能 ON/OFF(开/关)设置在<档计数显示>页面中同样可以设置。

列表扫描比较功能设置步骤:

以下操作步骤为使用 HANDLER 接口列表扫描比较功能步骤。

- 1. 按动[列表设置]软键,进入<列表扫描设置>页面。
- 2. 在**<列表扫描设置>**菜单中设置扫描方式,扫描频率点,参考量及上下限等,详情可参见[**DISP**]菜单键说明。
- 3. 按键[**DISP**]软进入**<元件测量显示>**页面,选择[列表显示]软键进入**<列表扫描显示>**页面,此页面的说明可以参考[**DISP**]菜单键说明。

注: 使用 HANDLER 接口提高测量速度方法。

- 1. 量程锁定在你可能测到的最大的电容的量程上。比如说你最大测到 10uF,首先,把 10uF 让仪器自动选量程测量,然后锁定此量程。
 - 2. 在<测量设置>页面, 使监视 V: OFF, 监视 I: OFF;
 - 3. 放在<档计数显示>页面测试。

第9章 附录

9.1 成套

仪器出厂时应具备以下几项内容:

序号	名称	数量
1	TH283X 精密 LCR 数字电桥 (此系列仪器含的型号为 TH2830、 TH2832 与 TH2832D)	1台
2	三线电源线₩	1根
3	1A 保险丝≠	2 只
4	使用说明书	1 份
5	测试报告	1 份
6	质保证书	1张

用户收到仪器后,开箱检查时请核对以上内容,若发生遗缺,请立即与本公司或经营部门联系。

9.2 保修

保修期:使用单位从本公司购买仪器者,自公司发运日期计算,自经营部门购买者,自经营部门发运日期计算,保修期二年。保修应出具该仪器保修卡。保修期内,由于使用者操作不当而损坏仪器者,维修费用由用户承担。仪器由本公司负责终生维修。

本仪器维修需专业技术人员进行维修;维修时请不要擅自更换仪器内部各器件;对仪器维修后,需重新计量校准,以免影响测试精度。由于用户盲目维修,更换仪器部件造成仪器损坏不属保修范围,用户应承担维修费用。

仪器应防晒、防湿,应在1.4所述的环境中正确使用仪器。

长期不使用仪器,应将仪器用出厂时包装箱包装封存。

9.3 手册更改记录

版本历史:

本说明书将不断完善以利于使用。

由于说明书中可能存在的错误或遗漏,仪器功能的改进和完善,技术的更新 及软件的升级,说明书将做相应的调整和修订。

请关注您使用的软件版本及说明书版本。

- 1. 说明书版本 V1.0------2016-06
- 2. 说明书版本 V2.0------2024-01

修改内容:

Q 值准确度公式更改, SCPI 命令文件命名修改

3. 说明书版本 V2.1------2024-07

修改内容:

电磁兼容性规定修改,合并 2832D

添加列表扫描第二列参数设置命令

4. 说明书版本 V2.2------2024-07

修改内容:

增加自动返回命令 RS232:PRINT

5. 说明书版本 V2.3------2025-02

修改内容:

删除 5.3 关于四端描述

更新 6.3.8 准确度因子图

章节 3.3 增加 200kHz 到 300kHz 的频率点(250kHz、300kHz)

6. 说明书版本 V2.4------2025-06

修改内容:

删除 6.2.6 表格参数 Lk

删除 6.3.10 关于 Lk 测试

声明:本公司可能对该产品的性能、功能、软件、结构、外观、附件、包装以及说明书等进行完善和提高, 恕不另行通知!如造成疑惑,请与本公司联系。

常州同惠电子股份有限公司 ≥ 400-624-1118

地址: 江苏省常州市新北区新竹路1号

电话: 0519-85132222 传真: 0519-85109972

Http://www.tonghui.com.cn Email: sales@tonghui.com.cn